Andreev reflection in the $p$-wave superconductor--normal metal contact
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 55-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Andreev reflection is mathematically rigorously studied for the matrix differential Bogolyubov–de Gennes Hamiltonian. This Hamiltonian describes electrons and holes in a one-dimensional hybrid structure normal metal–$p$-wave superconductor. In this case, the physically correct symmetrized form of the Hamiltonian is used, which is described in the article. The Hamiltonian contains two delta-shaped potentials, one of which models an impurity in a superconductor, and the second characterizes the “transparency” of the junction normal metal–superconductor. It is proved that in the case of the topological phase there is an ideal Andreev reflection, i.e., an electron incident from the side of a normal metal (this electron has energy in the lacuna (superconducting gap), which is in the spectrum of the Bogolyubov-de Gennes Hamiltonian) with probability one, is reflected as a hole, regardless of the parameters of potentials describing the impurity and the “transparency” of the junction. For the nontopological phase, the formulas for probabilities of hole (Andreev) reflection and electron (normal) reflection are found. As is common in the study of hybrid structures, the matching method is used.
Keywords: Andreev reflection, Bogolyubov–de Gennes Hamiltonian, spectrum, scattering problem, probability of reflection.
@article{IIMI_2019_54_a4,
     author = {T. S. Tinyukova and Yu. P. Chuburin},
     title = {Andreev reflection in the $p$-wave superconductor--normal metal contact},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {54},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_54_a4/}
}
TY  - JOUR
AU  - T. S. Tinyukova
AU  - Yu. P. Chuburin
TI  - Andreev reflection in the $p$-wave superconductor--normal metal contact
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 55
EP  - 62
VL  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_54_a4/
LA  - ru
ID  - IIMI_2019_54_a4
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%A Yu. P. Chuburin
%T Andreev reflection in the $p$-wave superconductor--normal metal contact
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 55-62
%V 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_54_a4/
%G ru
%F IIMI_2019_54_a4
T. S. Tinyukova; Yu. P. Chuburin. Andreev reflection in the $p$-wave superconductor--normal metal contact. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 55-62. http://geodesic.mathdoc.fr/item/IIMI_2019_54_a4/

[1] Shmidt V. V., Introduction to the physics of superconductors, Moscow Center for Continuous Mathematical Education, M., 2000

[2] Setiawan F., Brydon P. M.R., Sau J. D., Das Sarma S., “Conductance spectroscopy of topological superconductor wire junctions”, Phys. Rev. B, 91:21 (2015), 214513 | DOI

[3] Liu C.-X., Sau J. D., Stanescu T. D., Das Sarma S., “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks”, Phys. Rev. B, 96:7 (2017), 075161 | DOI

[4] Alicea J., “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Prog. Phys., 75:7 (2012), 076501 | DOI

[5] Sato M., Fujimoto S., “Majorana fermions and topology in superconductors”, Journal of the Physical Society of Japan, 85:7 (2016), 072001 | DOI

[6] Elliot S. R., Franz M., “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics”, Rev. Mod. Phys., 87:1 (2015), 137–163 | DOI | MR

[7] Tinyukova T. S., “Majorana states in a $p$-wave superconducting nanowire”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 222–230 | DOI | Zbl

[8] Sengupta K., Žutić I., Kwon H.-J., Yakovenko V. M., Das Sarma S., “Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors”, Phys. Rev. B, 63:14 (2001), 144531 | DOI

[9] Moore C., Zeng C., Stanescu T. D., Tewari S., “Quantized zero-bias conductance plateau in semiconductor-superconductor heterostructures without non-Abelian Majorana zero modes”, Phys. Rev. B, 98:15 (2018), 155314 | DOI

[10] Vuik A., Nijholt B., Akhmerov A. R., Wimmer M., Reproducing topological properties with quasi-Majorana states, 2018, arXiv: 1806.02801v1 [cond-mat.mes-hall]