On the continuous dependence on the parameter of the set of solutions of the operator equation
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 27-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings acting from a metric space $ (X, \rho_X) $ to a space $ Y, $ on which a distance is defined (i.e., a function $ d: X \times X \to \mathbb{R}_+ $ such that $ d (x, u) = 0 \Leftrightarrow x=u $), the following analogue of the covering property is defined. The set $$ \mathrm{Cov}_{\alpha} [f] = \{(x, \tilde{y}) \in X \times Y: \, \exists \tilde{x} \in X \ f(\tilde{x}) =\tilde{y}, \ \rho_{X}(\tilde{x}, x) \leq {\alpha}^{-1} d_{Y} \bigl(\tilde{y}, f(x) \bigr)\}$$ is called the set of $\alpha$-covering of the mapping $f:X \to Y.$ For given $ \tilde{y} \in Y, $ $ \Phi: X \times X \to Y $ the equation $\Phi(x,x)=\tilde{y}$ is considered. A theorem on the existence of a solution is formulated. The problem of the stability of solutions on small perturbations of the mapping $\Phi$ is investigated. Namely, we consider a sequence of mappings $\Phi_{n}: X\times X\to Y, $ $n = 1,2,\ldots,$ such that for all $x \in X$ the following holds: $(x,\tilde{y}) \in \mathrm{Cov}_{\alpha}\big[\Phi_n(\cdot,x)\big],$ the mapping $\Phi_n( x,\cdot)$ is $\beta$-Lipschitz and for the solution $x^{*}$ of the initial equation $d_{Y} \big (\tilde{y}, \Phi_{n} (x^{*}, x^{*}) \big) \to 0.$ Under these conditions, it is proved that for any $n$ there exists $x^{*}_{n}$ such that $\Phi_{n} (x^{*}_{n}, x^{*}_{n}) = \tilde{y}$ and $\{x^{*}_{n} \} $ converges to $x^{*}$ in the metric space $X.$  Moreover, we consider the equation $\Phi(x,x,t)=\tilde{y}$ with the parameter $t$ which is an element of a topological space. It is assumed that $(x, \tilde{y})\in \mathrm{Cov}_{\alpha} \big [\Phi_n (\cdot, x, t) \big], $ the mapping $\Phi_n (x, \cdot, t) $ is $\beta$-Lipschitz, and the mapping $ \Phi_n (x, x, \cdot) $ is continuous. Statements on the upper and lower semicontinuous dependence of the solutions set on the parameter $t$ are proved.
Keywords: operator equation, continuous dependence of a solution on parameters, metric space, covering mapping, Lipschitz mapping.
Mots-clés : existence of solutions, estimation of solutions
@article{IIMI_2019_54_a1,
     author = {E. S. Zhukovskiy and W. Merchela},
     title = {On the continuous dependence on the parameter of the set of solutions of the operator equation},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {54},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_54_a1/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
AU  - W. Merchela
TI  - On the continuous dependence on the parameter of the set of solutions of the operator equation
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 27
EP  - 37
VL  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_54_a1/
LA  - ru
ID  - IIMI_2019_54_a1
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%A W. Merchela
%T On the continuous dependence on the parameter of the set of solutions of the operator equation
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 27-37
%V 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_54_a1/
%G ru
%F IIMI_2019_54_a1
E. S. Zhukovskiy; W. Merchela. On the continuous dependence on the parameter of the set of solutions of the operator equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 27-37. http://geodesic.mathdoc.fr/item/IIMI_2019_54_a1/

[1] Lusternik L. A., “On conditional extrema of functionals”, Matematicheskii Sbornik, 41:3 (1934), 390–401 (in Russian)

[2] Graves L. M., “Some mapping theorems”, Duke Math. J., 17:2 (1950), 111–114 | DOI | MR | Zbl

[3] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Lyusternik's theorem and the theory of extrema”, Russian Mathematical Surveys, 35:6 (1980), 11–51 | DOI | MR | Zbl | Zbl

[4] Arutyunov A. V., “Covering mappings in metric spaces and fixed points”, Doklady Mathematics, 76:2 (2007), 665–668 | DOI | MR | Zbl

[5] Avakov E. R., Arutyunov A. V., Zhukovskii E. S., “Covering mappings and their applications to differential equations unsolved for the derivative”, Differential Equations, 45:5 (2009), 627–649 | DOI | MR | Zbl

[6] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “On the well-posedness of differential equations unsolved for the derivative”, Differential Equations, 47:11 (2011), 1541–1555 | DOI | MR | Zbl

[7] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Applications, 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[8] Arutyunov A. V., “Stability of coincidence points and properties of covering mappings”, Mathematical Notes, 86:1–2 (2009), 153–158 | DOI | DOI | MR | Zbl

[9] Arutyunov A. V., Avakov E. R., Zhukovskiy S. E., “Stability theorems for estimating the distance to a set of coincidence points”, SIAM J. Optim., 25:2 (2015), 807–828 | DOI | MR | Zbl

[10] Zhukovski{ĭ} E.S., “Perturbations of vectorial coverings and systems of equations in metric spaces”, Siberian Mathematical Journal, 57:2 (2016), 230–241 | DOI | DOI | MR | Zbl

[11] Zhukovskiy E. S., “On coincidence points of multivalued vector mappings of metric spaces”, Mathematical Notes, 100:3–4 (2016), 363–379 | DOI | DOI | MR | Zbl

[12] Arutyunov A. V., Greshnov A. V., “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | DOI | MR | Zbl

[13] Merchela W., “About Arutyunov theorem of coincidence point for two mapping in metric spaces”, Vestnik Tambovskogo Universiteta. Ser. Estestvennye i Tekhnicheskie Nauki, 23:121 (2018), 65–73 | DOI

[14] Arutyunov A., Avakov E., Gel'man B., Dmitruk A., Obukhovskii V., “Locally covering maps in metric spaces and coincidence points”, Journal of Fixed Point Theory and Applications, 5:1 (2009), 105–127 | DOI | MR | Zbl

[15] Benarab S., Zhukovskii E. S., Merchela W., Trudy Instituta Matematiki i Mekhaniki URO RAN, 25, no. 4, 2019, 52–63 (in Russian) | DOI

[16] Arutyunov A. V., Lectures on convex and multivalued analysis, Fizmatlit, M., 2014

[17] Borisovich Yu. G., Gel'man B. D., Myshkis A. D., Obukhovskii V. V., Introduction to the theory of multivalued mappings and differential inclusions, Librokom, M., 2011