On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with a two-dimensional Dirac operator $\widehat \sigma _1\bigl( -i\, \frac {\partial }{\partial x_1}\bigr) +\widehat \sigma _2\bigl( -i\, \frac {\partial }{\partial x_2}-Bx_1\bigr) +m\widehat \sigma _3+V\widehat I_2$ with a uniform magnetic field $B$ where $\widehat \sigma _j$, $j=1,2,3$, are the Pauli matrices and $\widehat I_2$ is the unit $2\times 2$-matrix. The function $m$ and the electric potential $V$ belong to the space $L^p_{\Lambda }({\mathbb R}^2;{\mathbb R})$ of $\Lambda $-periodic functions from the $L^p_{\mathrm {loc}}({\mathbb R}^2;{\mathbb R})$, $p>2$, and we suppose that for the magnetic flux $\eta =(2\pi )^{-1}Bv(K)\in \mathbb{Q} $ where $v(K)$ is the area of an elementary cell $K$ of the period lattice $\Lambda $. For any nonincreasing function $(0,1]\ni \varepsilon \mapsto {\mathcal R}(\varepsilon )\in (0,+\infty )$ for which ${\mathcal R}(\varepsilon )\to +\infty $ as $\varepsilon \to +0$ let ${\mathfrak M}^p_{\Lambda }({\mathcal R}(\cdot ))$ be the set of functions $m\in L^p_{\Lambda }({\mathbb R}^2;{\mathbb R})$ such that for every $\varepsilon \in (0,1]$ there exists a real-valued $\Lambda $-periodic trigonometric polynomial ${\mathcal P}^{(\varepsilon )}$ such that $\| m-{\mathcal P} ^{(\varepsilon )}\| _{L^p(K)}\varepsilon $ and for Fourier coefficients ${\mathcal P}^{(\varepsilon )}_Y=0$ provided $|Y|>{\mathcal R}(\varepsilon )$. It is proved that for any function ${\mathcal R}(\cdot )$ in question there is a dense $G_{\delta }$-set ${\mathcal O}$ in the Banach space $(L^p_{\Lambda }({\mathbb R}^2;{\mathbb R}),\| \cdot \| _{L^p(K)})$ such that for every electric potential $V\in {\mathcal O}$, for every function $m\in {\mathfrak M}^p_{\Lambda }({\mathcal R} (\cdot ))$, and for every uniform magnetic field $B$ with the flux $\eta \in \mathbb{Q} $ the spectrum of the Dirac operator is absolutely continuous.
Keywords: two-dimensional Dirac operator, periodic electric potential, homogeneous magnetic field, spectrum.
@article{IIMI_2019_54_a0,
     author = {L. I. Danilov},
     title = {On the spectrum of a relativistic {Landau} {Hamiltonian} with a periodic electric potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {54},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_54_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 3
EP  - 26
VL  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_54_a0/
LA  - ru
ID  - IIMI_2019_54_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 3-26
%V 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_54_a0/
%G ru
%F IIMI_2019_54_a0
L. I. Danilov. On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 3-26. http://geodesic.mathdoc.fr/item/IIMI_2019_54_a0/

[1] Danilov L. I., “On the spectrum of the two-dimensional periodic Dirac operator”, Theoretical and Mathematical Physics, 118:1 (1999), 1–11 | DOI | DOI | MR

[2] Birman M. Sh., Suslina T. A., “The periodic Dirac operator is absolutely continuous”, Integral Equations and Operator Theory, 34:4 (1999), 377–395 | DOI | MR | Zbl

[3] Lapin I. S., “Absolute continuity of the spectra of two-dimensional periodic magnetic Schrödinger operator and Dirac operator with potentials in the Zygmund class”, Journal of Mathematical Sciences, 106:3 (2001), 2952–2974 | DOI | MR | Zbl

[4] Danilov L. I., On absolute continuity of the spectrum of periodic Schr{ö}dinger and Dirac operators. II, Deposited in VINITI 09.04.2001, No 916-B2001, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 2001, 60 pp. (in Russian)

[5] Danilov L. I., “On the spectra of two-dimensional periodic Schrödinger and Dirac operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2002, no. 3 (26), 3–98 (in Russian)

[6] Danilov L. I., “On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schr{ö}dinger operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, no. 1 (29), 49–84 (in Russian)

[7] Danilov L. I., “Absence of eigenvalues for the generalized two-dimensional periodic Dirac operator”, St. Petersburg Math. J., 17:3 (2006), 409–433 | DOI | MR | Zbl

[8] Rabi I. I., “Das freie elektron im homogenen magnetfeld nach der Diracschen theorie”, Zeitschrift f{ü}r Physik, 49:7–8 (1928), 507–511 | DOI | Zbl

[9] Johnson M. H., Lippmann B. A., “Motion in a constant magnetic field”, Physical Review, 76:6 (1949), 828–832 | DOI | MR | Zbl

[10] Geiler V. A., “The two-dimensional Schr{ö}dinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials”, St. Petersburg Math. J., 3:3 (1992), 489–532 | MR

[11] Cycon H. L., Froese R. G., Kirsch W., Simon B., Schr{ö}dinger operators: With applications to quantum mechanics and global geometry, Springer-Verlag, Berlin–Heidelberg, 1987 | MR

[12] Klopp F., “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Mathematische Annalen, 347:3 (2010), 675–687 | DOI | MR | Zbl

[13] Danilov L. I., “On the spectrum of a two-dimensional Schr{ö}dinger operator with a homogeneous magnetic field and a periodic electric potential”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 51 (2018), 3–41 (in Russian) | DOI

[14] Birman M. Sh., Suslina T. A., “Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR

[15] Shterenberg R. G., “Absolute continuity of the spectrum of the two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, American Mathematical Society Translations: Series 2, 2003, 191–229 | DOI | MR | Zbl

[16] Danilov L. I., “The spectrum of the two-dimensional periodic Schr{ö}dinger operator”, Theoretical and Mathematical Physics, 134:3 (2003), 392–403 | DOI | DOI | MR | Zbl

[17] Shterenberg R. G., “Absolute continuity of spectra of two-dimensional periodic Schr{ö}dinger operators with strongly subordinate magnetic potentials”, Journal of Mathematical Sciences, 129:4 (2005), 4087–4109 | DOI | MR | Zbl

[18] Danilov L. I., “On the spectrum of a two-dimensional generalized periodic Schr{ö}dinger operator. II”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 2, 3–28 (in Russian) | DOI

[19] Kuchment P., Levendorskiî S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl

[20] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl

[21] Kuchment P., Floquet theory for partial differential equations, Birkhäuser, Basel, 1993 | DOI | MR | Zbl

[22] Danilov L. I., The spectrum of the Dirac operator with periodic potential. VI, Deposited in VINITI 31.12.1996, No 3855-B96, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1996, 45 pp. (in Russian)

[23] Filonov N., Sobolev A. V., “Absence of the singular continuous component in spectra of analytic direct integrals”, Journal of Mathematical Sciences, 136:2 (2006), 3826–3831 | DOI | MR

[24] Danilov L. I., The spectrum of the Dirac operator with periodic potential. III, Deposited in VINITI 10.07.1992, No 2252-B92, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1992, 33 pp. (in Russian)

[25] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl

[26] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, selfadjointness, Academic Press, New York, 1975 | MR | Zbl