Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2019_54_a0, author = {L. I. Danilov}, title = {On the spectrum of a relativistic {Landau} {Hamiltonian} with a periodic electric potential}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--26}, publisher = {mathdoc}, volume = {54}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2019_54_a0/} }
TY - JOUR AU - L. I. Danilov TI - On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2019 SP - 3 EP - 26 VL - 54 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2019_54_a0/ LA - ru ID - IIMI_2019_54_a0 ER -
%0 Journal Article %A L. I. Danilov %T On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2019 %P 3-26 %V 54 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2019_54_a0/ %G ru %F IIMI_2019_54_a0
L. I. Danilov. On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 3-26. http://geodesic.mathdoc.fr/item/IIMI_2019_54_a0/
[1] Danilov L. I., “On the spectrum of the two-dimensional periodic Dirac operator”, Theoretical and Mathematical Physics, 118:1 (1999), 1–11 | DOI | DOI | MR
[2] Birman M. Sh., Suslina T. A., “The periodic Dirac operator is absolutely continuous”, Integral Equations and Operator Theory, 34:4 (1999), 377–395 | DOI | MR | Zbl
[3] Lapin I. S., “Absolute continuity of the spectra of two-dimensional periodic magnetic Schrödinger operator and Dirac operator with potentials in the Zygmund class”, Journal of Mathematical Sciences, 106:3 (2001), 2952–2974 | DOI | MR | Zbl
[4] Danilov L. I., On absolute continuity of the spectrum of periodic Schr{ö}dinger and Dirac operators. II, Deposited in VINITI 09.04.2001, No 916-B2001, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 2001, 60 pp. (in Russian)
[5] Danilov L. I., “On the spectra of two-dimensional periodic Schrödinger and Dirac operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2002, no. 3 (26), 3–98 (in Russian)
[6] Danilov L. I., “On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schr{ö}dinger operators”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, no. 1 (29), 49–84 (in Russian)
[7] Danilov L. I., “Absence of eigenvalues for the generalized two-dimensional periodic Dirac operator”, St. Petersburg Math. J., 17:3 (2006), 409–433 | DOI | MR | Zbl
[8] Rabi I. I., “Das freie elektron im homogenen magnetfeld nach der Diracschen theorie”, Zeitschrift f{ü}r Physik, 49:7–8 (1928), 507–511 | DOI | Zbl
[9] Johnson M. H., Lippmann B. A., “Motion in a constant magnetic field”, Physical Review, 76:6 (1949), 828–832 | DOI | MR | Zbl
[10] Geiler V. A., “The two-dimensional Schr{ö}dinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials”, St. Petersburg Math. J., 3:3 (1992), 489–532 | MR
[11] Cycon H. L., Froese R. G., Kirsch W., Simon B., Schr{ö}dinger operators: With applications to quantum mechanics and global geometry, Springer-Verlag, Berlin–Heidelberg, 1987 | MR
[12] Klopp F., “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Mathematische Annalen, 347:3 (2010), 675–687 | DOI | MR | Zbl
[13] Danilov L. I., “On the spectrum of a two-dimensional Schr{ö}dinger operator with a homogeneous magnetic field and a periodic electric potential”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 51 (2018), 3–41 (in Russian) | DOI
[14] Birman M. Sh., Suslina T. A., “Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR
[15] Shterenberg R. G., “Absolute continuity of the spectrum of the two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, American Mathematical Society Translations: Series 2, 2003, 191–229 | DOI | MR | Zbl
[16] Danilov L. I., “The spectrum of the two-dimensional periodic Schr{ö}dinger operator”, Theoretical and Mathematical Physics, 134:3 (2003), 392–403 | DOI | DOI | MR | Zbl
[17] Shterenberg R. G., “Absolute continuity of spectra of two-dimensional periodic Schr{ö}dinger operators with strongly subordinate magnetic potentials”, Journal of Mathematical Sciences, 129:4 (2005), 4087–4109 | DOI | MR | Zbl
[18] Danilov L. I., “On the spectrum of a two-dimensional generalized periodic Schr{ö}dinger operator. II”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 2, 3–28 (in Russian) | DOI
[19] Kuchment P., Levendorskiî S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl
[20] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl
[21] Kuchment P., Floquet theory for partial differential equations, Birkhäuser, Basel, 1993 | DOI | MR | Zbl
[22] Danilov L. I., The spectrum of the Dirac operator with periodic potential. VI, Deposited in VINITI 31.12.1996, No 3855-B96, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1996, 45 pp. (in Russian)
[23] Filonov N., Sobolev A. V., “Absence of the singular continuous component in spectra of analytic direct integrals”, Journal of Mathematical Sciences, 136:2 (2006), 3826–3831 | DOI | MR
[24] Danilov L. I., The spectrum of the Dirac operator with periodic potential. III, Deposited in VINITI 10.07.1992, No 2252-B92, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1992, 33 pp. (in Russian)
[25] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl
[26] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, selfadjointness, Academic Press, New York, 1975 | MR | Zbl