Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2019_53_a8, author = {P. D. Lebedev and A. A. Uspenskii}, title = {Construction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundary}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {98--114}, publisher = {mathdoc}, volume = {53}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a8/} }
TY - JOUR AU - P. D. Lebedev AU - A. A. Uspenskii TI - Construction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundary JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2019 SP - 98 EP - 114 VL - 53 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a8/ LA - ru ID - IIMI_2019_53_a8 ER -
%0 Journal Article %A P. D. Lebedev %A A. A. Uspenskii %T Construction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundary %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2019 %P 98-114 %V 53 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a8/ %G ru %F IIMI_2019_53_a8
P. D. Lebedev; A. A. Uspenskii. Construction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundary. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 98-114. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a8/
[1] Lebedev P. D., Uspenskii A. A., “Analytical and numerical construction of the optimal outcome function for a class of time-optimal problems”, Computational Mathematics and Modeling, 19:4 (2008), 375–386 | DOI | MR | Zbl
[2] Lebedev P. D., Uspenskii A. A., “Geometry and asymptotics of wavefronts”, Russian Mathematics, 52:3 (2008), 24–33 | DOI | MR | MR | Zbl
[3] Subbotin A. I., Generalized solutions of first order PDEs: the dynamical optimization perspective, Birkhäuser, Boston, 1995, xii+314 pp. | DOI | MR | MR
[4] Kruz̆kov S. N., “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Mathematics of the USSR–Sbornik, 27:3 (1975), 406–446 | DOI | MR | Zbl
[5] Dem'yanov V. F., Vasil'ev L. V., Non-differentiable optimization, Nauka, M., 1981, 384 pp. | MR
[6] Isaacs R., Differential games, John Wiley and Sons, N.Y., 1965 | MR | Zbl
[7] Arnold V. I., Singularities of caustics and wave fronts, Springer, Dordrecht, 1990 | DOI | MR | MR
[8] Sedykh V. D., “On the topology of wave fronts in spaces of low dimension”, Izvestiya: Mathematics, 76:2 (2012), 375–418 | DOI | DOI | MR | Zbl
[9] Lebedev P. D., Uspenskii A. A., “Construction of the optimal result function and dispersing lines in time-optimal problems with a nonconvex target set”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 22, no. 2, 2016, 188–198 (in Russian) | DOI
[10] Uspenskii A. A., Lebedev P. D., “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:1 (2018), 59–73 (in Russian) | DOI | MR | Zbl
[11] Rashevskii P. K., A course in differential geometry, URSS, M., 2003 | MR
[12] Uspenskii A. A., Lebedev P. D., “On the set of limit values of local diffeomorphisms in wavefront evolution”, Proceedings of the Steklov Institute of Mathematics, 272, suppl. 1 (2011), 255–270 | DOI | MR | Zbl
[13] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Geometry of singular curves for one class of velocity”, Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, no. 3, 157–167 (in Russian)
[14] Uspenskii A. A., Lebedev P. D., “Construction of the optimal outcome function for a time-optimal problem on the basis of a symmetry set”, Automation and Remote Control, 70:7 (2009), 1132–1139 | DOI | MR | Zbl
[15] Vinberg E. B., Algebra of polynomials, Prosveshchenie, M., 1980
[16] Lebedev P. D., Uspenskii A. A., Program for constructing wave fronts and functions of the Euclidean distance to a compact nonconvex set, Certificate of state registration of the computer program No 2017662074, October 27, 2017
[17] Lebedev P. D., Uspenskii A. A., “Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 25, no. 1, 2019, 108–119 (in Russian) | DOI