Modality analysis of patterns in reaction-diffusion systems with random perturbations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 73-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a distributed Brusselator model with diffusion is investigated. It is well known that this model undergoes both Andronov–Hopf and Turing bifurcations. It is shown that in the parametric zone of diffusion instability the model generates a variety of stable spatially nonhomogeneous structures (patterns). This system exhibits a phenomenon of the multistability with the diversity of stable spatial structures. At the same time, each pattern has its unique parametric range, on which it may be observed. The focus is on analysis of stochastic phenomena of pattern formation and transitions induced by small random perturbations. Stochastic effects are studied by the spatial modality analysis. It is shown that the structures possess different degrees of stochastic sensitivity.
Keywords: Turing instability, self-organization, pattern formation, noise-induced dynamics, modality analysis.
Mots-clés : reaction-diffusion model
@article{IIMI_2019_53_a6,
     author = {A. P. Kolinichenko and L. B. Ryashko},
     title = {Modality analysis of patterns in reaction-diffusion systems with random perturbations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {53},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a6/}
}
TY  - JOUR
AU  - A. P. Kolinichenko
AU  - L. B. Ryashko
TI  - Modality analysis of patterns in reaction-diffusion systems with random perturbations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 73
EP  - 82
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a6/
LA  - en
ID  - IIMI_2019_53_a6
ER  - 
%0 Journal Article
%A A. P. Kolinichenko
%A L. B. Ryashko
%T Modality analysis of patterns in reaction-diffusion systems with random perturbations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 73-82
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a6/
%G en
%F IIMI_2019_53_a6
A. P. Kolinichenko; L. B. Ryashko. Modality analysis of patterns in reaction-diffusion systems with random perturbations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 73-82. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a6/

[1] Murray J., Mathematical biology, Springer-Verlag, Berlin, 1993 | MR | Zbl

[2] Nicolis G., Prigogine I., Self-organization in nonequilibrium systems, Wiley, New York, 1977 | MR | Zbl

[3] Turing A., “The chemical basis of morphogenesis”, Philos. Trans. R. Soc. Lond. B, 237:641 (1952), 37–72 | DOI | MR | Zbl

[4] Kolinichenko A., Ryashko L., “Analysis of spatiotemporal self-organization in stochastic population model”, AIP Conference Proceedings, 2015 (2018), 020041 | DOI

[5] Hoshino T., Liu M.-W., Wu K.-A., Chen H.-Y., Tsuruyama T., Komura S., “Pattern formation of skin cancers: Effects of cancer proliferation and hydrodynamic interactions”, Physical Review E, 99 (2019), 032416 | DOI

[6] Morales M. A., Fernandez-Cervantes I., Augustin-Serrano R., Anzo A., Sampedro M. P., “Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics”, Eur. Phys. J. B, 89:182 (2016) | DOI | MR

[7] Pablo M., Ramirez S. A., Elston T. C., “Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation”, PLoS Comput. Biol., 14:3 (2018), e1006016 | DOI

[8] Zheng Q., Shen J., “Pattern formation in the FitzHugh–Nagumo model”, Computers Mathematics with Applications, 70:5 (2015), 1082–1097 | DOI | MR

[9] Ekaterinchuk E., Ryashko L., “Stochastic generation of spatial patterns in Brusselator”, AIP Conference Proceedings, 1773 (2016), 060005 | DOI