Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2019_53_a6, author = {A. P. Kolinichenko and L. B. Ryashko}, title = {Modality analysis of patterns in reaction-diffusion systems with random perturbations}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {73--82}, publisher = {mathdoc}, volume = {53}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a6/} }
TY - JOUR AU - A. P. Kolinichenko AU - L. B. Ryashko TI - Modality analysis of patterns in reaction-diffusion systems with random perturbations JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2019 SP - 73 EP - 82 VL - 53 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a6/ LA - en ID - IIMI_2019_53_a6 ER -
%0 Journal Article %A A. P. Kolinichenko %A L. B. Ryashko %T Modality analysis of patterns in reaction-diffusion systems with random perturbations %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2019 %P 73-82 %V 53 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a6/ %G en %F IIMI_2019_53_a6
A. P. Kolinichenko; L. B. Ryashko. Modality analysis of patterns in reaction-diffusion systems with random perturbations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 73-82. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a6/
[1] Murray J., Mathematical biology, Springer-Verlag, Berlin, 1993 | MR | Zbl
[2] Nicolis G., Prigogine I., Self-organization in nonequilibrium systems, Wiley, New York, 1977 | MR | Zbl
[3] Turing A., “The chemical basis of morphogenesis”, Philos. Trans. R. Soc. Lond. B, 237:641 (1952), 37–72 | DOI | MR | Zbl
[4] Kolinichenko A., Ryashko L., “Analysis of spatiotemporal self-organization in stochastic population model”, AIP Conference Proceedings, 2015 (2018), 020041 | DOI
[5] Hoshino T., Liu M.-W., Wu K.-A., Chen H.-Y., Tsuruyama T., Komura S., “Pattern formation of skin cancers: Effects of cancer proliferation and hydrodynamic interactions”, Physical Review E, 99 (2019), 032416 | DOI
[6] Morales M. A., Fernandez-Cervantes I., Augustin-Serrano R., Anzo A., Sampedro M. P., “Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics”, Eur. Phys. J. B, 89:182 (2016) | DOI | MR
[7] Pablo M., Ramirez S. A., Elston T. C., “Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation”, PLoS Comput. Biol., 14:3 (2018), e1006016 | DOI
[8] Zheng Q., Shen J., “Pattern formation in the FitzHugh–Nagumo model”, Computers Mathematics with Applications, 70:5 (2015), 1082–1097 | DOI | MR
[9] Ekaterinchuk E., Ryashko L., “Stochastic generation of spatial patterns in Brusselator”, AIP Conference Proceedings, 1773 (2016), 060005 | DOI