On external estimates of reachable sets of control systems with integral constraints
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 61-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of constructing external estimates of reachable sets as a level set of a certain differentiable Lyapunov–Bellman function (depending only on the state vector) for a control system with an integral control constraint. In particular, with its suitable choice, one can obtain ellipsoidal and rectangular estimates. The proposed constructions are based on integral estimates, the maximum solution, and the comparison principle for systems of differential inequalities. By using time in the arguments of the Lyapunov–Bellman function, it is possible to obtain more accurate estimates. In the linear nonstationary case, the latter can coincide with the set of reachability. A number of illustrative examples for nonlinear systems are given.
Keywords: reachable set, controlled system, integral constraints, integral inequalities, comparison principle, external estimates.
@article{IIMI_2019_53_a5,
     author = {I. V. Zykov},
     title = {On external estimates of reachable sets of control systems with integral constraints},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {61--72},
     publisher = {mathdoc},
     volume = {53},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a5/}
}
TY  - JOUR
AU  - I. V. Zykov
TI  - On external estimates of reachable sets of control systems with integral constraints
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 61
EP  - 72
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a5/
LA  - ru
ID  - IIMI_2019_53_a5
ER  - 
%0 Journal Article
%A I. V. Zykov
%T On external estimates of reachable sets of control systems with integral constraints
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 61-72
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a5/
%G ru
%F IIMI_2019_53_a5
I. V. Zykov. On external estimates of reachable sets of control systems with integral constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 61-72. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a5/

[1] Gurman V. I., The principle of expansion in control problems, Fizmatlit, M., 1997, 287 pp.

[2] Dykhta V. A., “Lyapunov–Krotov inequality and sufficient conditions in optimal control”, Journal of Mathematical Sciences (New York), 121:2 (2004), 2156–2177 | DOI | MR | Zbl

[3] Kurzhanski A. B., “Comparison principle for equations of the Hamilton–Jacobi type in control theory”, Proceedings of the Steklov Institute of Mathematics, 253, suppl. 1 (2006), 185–195 | DOI | MR | Zbl

[4] Gusev M. I., “On external estimates for reachable sets of nonlinear control systems”, Proceedings of the Steklov Institute of Mathematics, 275, suppl. 1 (2011), 57–67 | DOI | MR | Zbl

[5] Nikol'skii M. S., “On estimating the reachable set for some controlled objects”, Proceedings of the International Conference dedicated to the 110th anniversary of Lev Semenovich Pontryagin (Moscow, 2018), 194–196 (in Russian) | DOI | Zbl

[6] Martynyuk A. A., Lakshmikantam V., Lila S., Stability of motion: the method of integral inequalities, Nauk. dumka, Kiev, 1989, 272 pp.

[7] Gusev M. I., Zykov I. V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC-PapersOnLine, 50:1 (2017), 4082–4087 | DOI

[8] Zykov I. V., “On the reachability problem for a nonlinear control system with integral constraints”, CEUR-WS Proceedings, 1894, 2017, 88–97 (in Russian)

[9] Lee E. B., Marcus L., Foundations of optimal control theory, Wiley, New York, 1967 https://archive.org/details/FoundationsOfOptimalControlTheory | MR | Zbl