Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2019_53_a4, author = {M. S. Blizorukova}, title = {The dynamical discrepancy method in problems of reconstructing unknown characteristics of a second-order system}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {48--60}, publisher = {mathdoc}, volume = {53}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a4/} }
TY - JOUR AU - M. S. Blizorukova TI - The dynamical discrepancy method in problems of reconstructing unknown characteristics of a second-order system JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2019 SP - 48 EP - 60 VL - 53 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a4/ LA - ru ID - IIMI_2019_53_a4 ER -
%0 Journal Article %A M. S. Blizorukova %T The dynamical discrepancy method in problems of reconstructing unknown characteristics of a second-order system %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2019 %P 48-60 %V 53 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a4/ %G ru %F IIMI_2019_53_a4
M. S. Blizorukova. The dynamical discrepancy method in problems of reconstructing unknown characteristics of a second-order system. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 48-60. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a4/
[1] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl
[2] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., The methods of dynamical reconstruction of inputs, Izd-vo Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2011, 292 pp.
[3] Maksimov V. I., Dynamic inverse problems of distributed systems, VSP, Utrecht, 2002, 269 pp. | MR
[4] Osipov Yu.S., Kryazhimskii A. V., Maksimov V. I., “N.N. Krasovskii's extremal shift method and problems of boundary control”, Automation and Remote Control, 70:4 (2009), 577–588 | DOI | MR | Zbl
[5] Maksimov V. I., Osipov Yu. S., “Infinite-horizon boundary control of distributed systems”, Computational Mathematics and Mathematical Physics, 56:1 (2016), 14–25 | DOI | DOI | MR | Zbl
[6] Osipov Yu., Pandolfi L., Maksimov V., “Problems of dynamical reconstruction and robust boundary control: the case of Dirichlet boundary conditions”, J. Inverse and Ill-Posed Problems, 9:2 (2001), 149–162 | DOI | MR | Zbl
[7] Kryazhimskii A. V., Osipov Yu. S., Transactions, Ural. Otd. Akad. Nauk USSR, Sverdlovsk, 1988 (in Russian) | MR
[8] Maksimov V. I., “The dynamical decoupled method in the input reconstruction problem”, Computational Mathematics and Mathematical Physics, 44:2 (2004), 278–288 | MR | Zbl
[9] Blizorukova M. S., “Input modeling in time-delayed systems”, Computational Mathematics and Modeling, 12:2 (2001), 174–185 | DOI | MR | Zbl
[10] Maksimov V. I., “Positional modeling of controls and initial functions for Volterra systems”, Differ. Uravn., 23:4 (1987), 618–629 (in Russian) | MR
[11] Maksimov V. I., Blizorukova M. S., “On robust on-line parameter reconstruction technique”, Appl. Comput. Math., 7:2 (2008), 223–234 http://acmij.az/view.php?lang=az&menu=journal&id=216 | MR | Zbl
[12] Maksimov V. I., “Simulation of unknown perturbations in nonlinear parabolic systems of variational inequalities,”, Tekhnicheskhaya Kibernetika, 1992, no. 1, 157–162 (in Russian) | Zbl
[13] Maksimov V. I., “Some dynamical inverse problems for hyperbolic systems”, Control and Cybernetics, 25:3 (1996), 465–481 http://control.ibspan.waw.pl:3000/contents/export?filename=1996-3-06_maksimov.pdf | MR | Zbl
[14] Bertuglia C. S., Lombado S., Nijkamp P., Innovation behavior in space and time, Springer, Berlin, 1997
[15] Maksimov V. I., Rosenberg V. L., Methods of mathematical modeling of dynamic processes associated with the environment, Izd-vo Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2009, 195 pp.
[16] Kryazhimskii A., Maksimov V., “On identification of nonobservable contamination inputs”, Environ. Model. Softw., 20 (2005), 1057–1061 | DOI
[17] Blizorukova M. S., Kapustyan V. E., Maksimov V. I., “Application of feedback control methods to two models in environmental economics”, Computational Mathematics and Modeling, 25:4 (2014), 459–469 | DOI | MR | Zbl
[18] Blizorukova M. S., “On a modification of the dynamical discrepancy method”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2008, no. 2, 21–22 (in Russian) | DOI
[19] Blizorukova M. S., “On the reconstruction of the trajectory and control in a nonlinear second-order system”, Proceedings of the Steklov Institute of Mathematics, 275, suppl. 1 (2011), 1–11 | DOI | MR | Zbl
[20] Avvakumov S. N., Kiselev Yu.N., “Optimal control laws for the model of information diffusion in a social group”, Computational Mathematics and Modeling, 22:3 (2011), 288–341 | DOI | MR | Zbl
[21] Avvakumov S. N., Kiselev Yu. N., “Models of information diffusion in a social group: construction of optimal programs”, Computational Mathematics and Modeling, 27:3 (2016), 327–350 | DOI | MR | Zbl
[22] Avvakumov S. N., Kiselev Yu. N., “Information diffusion model in a social group with possible special regimes on an infinite planning horizon”, Transactions, Problems of dynamic control, 6, MAKS Press, M., 2012, 189–196 (in Russian)