Ultrafilters and maximal linked systems: basic relations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 138-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ultrafilters and maximal linked systems with elements in the form of sets from the fixed $\pi$-system with “zero” and “unit” are investigated. Ultrafilters are maximal linked systems, but, among them, maximal linked systems that are not ultrafilters can be situated. In this paper, special attention is given to the description of the set of maximal linked systems that are not ultrafilters (they are called characteristic). In their properties these maximal linked systems differ from ultrafilters essentially. Necessary and sufficient conditions for existence of the above-mentioned systems (we mean conditions with respect to the initial $\pi$-system) and some topological properties for the set of all maximal linked systems of this type are obtained. In addition, for the construction of the corresponding equipment (just as in the ultrafilter case), the schemes ascending to procedures used under Wallman extension and Stone compactums are used; but the above-mentioned schemes are realized in the case when the anticipating measurable (by sense) structure is given by a $\pi$-system of general form. In particular, this allows one to envelop by a unique structure procedures for construction of spaces of ultrafilters and maximal linked systems for measurable and topological spaces. In the framework of this construction, bitopological spaces corresponding to Wallman and Stone variants of equipment arise naturally; in the first variant, for the case of maximal linked systems, the supercompact $T_1$-space is realized. Examples are given for which all maximal linked systems are ultrafilters; this corresponds to realization of supercompact ultrafilter space when the topology of Wallman type is used.
Keywords: bitopological space, maximal linked system, ultrafilter.
@article{IIMI_2019_53_a11,
     author = {A. G. Chentsov},
     title = {Ultrafilters and maximal linked systems: basic relations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {138--157},
     publisher = {mathdoc},
     volume = {53},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a11/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Ultrafilters and maximal linked systems: basic relations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 138
EP  - 157
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a11/
LA  - ru
ID  - IIMI_2019_53_a11
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Ultrafilters and maximal linked systems: basic relations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 138-157
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a11/
%G ru
%F IIMI_2019_53_a11
A. G. Chentsov. Ultrafilters and maximal linked systems: basic relations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 138-157. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a11/

[1] Bulinskii A. V., Shiryaev A. N., Theory of stochastic processes, Fizmatlit, M., 2005, 402 pp.

[2] Bourbaki N., Topologie Generale, Hermann, Paris, 1961, 263 pp. | MR

[3] Engel'king R., General topology, Mir, M., 1986, 751 pp. | MR

[4] Vladimirov D. A., Boolean algebras, Nauka, M., 1969, 319 pp. | MR

[5] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of N”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2010, no. 3, 10–17 (in Russian) | DOI

[6] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 11–16 (in Russian) | DOI | Zbl

[7] Golovastov R. A., “About Stone space of one Boolean algebra”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 3, 19–24 (in Russian) | DOI | Zbl

[8] Neveu J., Bases mathématiques du calcul des probabilités, Masson et CIE, Paris, 1964 | MR

[9] Arhangel'skii A. V., “Compactness,”, General Topology II, Encyclopaedia Math. Sci., 50, Springer-Verlag, Berlin, 1996, 1–117 | MR

[10] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972, 546 pp. | DOI | MR | Zbl

[11] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988, xi+517 pp. | MR | MR | Zbl

[12] Chentsov A. G., “On one example of representing the ultrafilter space for an algebra of sets”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 4, 2011, 293–311

[13] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 24, no. 1, 2018, 257–272 | DOI | MR

[14] Fedorchuk V. V., Filippov V. V., General topology. Basic constructions, Fizmatlit, M., 2006, 336 pp.

[15] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR

[16] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977, 238 pp. | MR | Zbl

[17] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl

[18] Chentsov A. G., “Ultrafilters and maximal linked systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 365–388 | DOI | MR | Zbl

[19] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Mathematical Journal, 3:2 (2017), 100–121 | DOI | MR

[20] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 1, 113–142 | DOI | Zbl

[21] Chentsov A. G., Asymptotic attainability, Springer Netherlands, Dordrecht, 1997, xiv+322 pp. | DOI | MR

[22] Chentsov A. G., Morina S. I., Extensions and relaxations, Springer Netherlands, Dordrecht, 2002, xiv+408 pp. | DOI | MR

[23] Chentsov A. G., Baklanov A. P., “On the question of construction of an attraction set under constraints of asymptotic nature”, Proceedings of the Steklov Institute of Mathematics, 291, suppl. 1 (2015), 40–55 | DOI | MR

[24] Chentsov A. G., Baklanov A. P., “On an asymptotic analysis problem related to the construction of an attainability domain”, Proceedings of the Steklov Institute of Mathematics, 291:1, 279–298 | DOI | DOI | MR | Zbl

[25] Chentsov A. G., Baklanov A. P., Savenkov I. I., “A problem of attainability with constraints of asymptotic nature”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2016, no. 1 (47), 54–118 | MR | Zbl

[26] Chentsov A. G., “Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems”, Proceedings of the Steklov Institute of Mathematics, 275, suppl. 1 (2011), 12–39 | DOI | MR | Zbl

[27] Chentsov A. G., “Ultrafilters and maximal linked systems: basic properties and topological constructions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 86–102 | DOI

[28] Aleksandrov P. S., Introduction to set theory and general topology, Editorial URSS, M., 2004, 368 pp.

[29] Chentsov A. G., “Some ultrafilter properties connected with extension constructions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 1, 87–101 | DOI | Zbl

[30] Dvalishvili B. P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, North-Holland, Amsterdam, 2005, 422 pp. | MR | Zbl

[31] Chentsov A. G., “Superextension as bitopological space”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 49 (2017), 55–79 | DOI | Zbl

[32] Chentsov A. G., Elements of a finitely additive measure theory, v. I, USTU-UPI, Yekaterinburg, 2009, 389 pp.

[33] Chentsov A. G., “One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature”, Proceedings of the Steklov Institute of Mathematics, 276, suppl. 1 (2012), 48–62 | DOI | MR