Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2019_53_a10, author = {L. Lu}, title = {Structural theorem for $gr$-injective modules over $gr$-noetherian $G$-graded commutative rings and local cohomology functors}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {127--137}, publisher = {mathdoc}, volume = {53}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a10/} }
TY - JOUR AU - L. Lu TI - Structural theorem for $gr$-injective modules over $gr$-noetherian $G$-graded commutative rings and local cohomology functors JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2019 SP - 127 EP - 137 VL - 53 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a10/ LA - en ID - IIMI_2019_53_a10 ER -
%0 Journal Article %A L. Lu %T Structural theorem for $gr$-injective modules over $gr$-noetherian $G$-graded commutative rings and local cohomology functors %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2019 %P 127-137 %V 53 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a10/ %G en %F IIMI_2019_53_a10
L. Lu. Structural theorem for $gr$-injective modules over $gr$-noetherian $G$-graded commutative rings and local cohomology functors. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 127-137. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a10/
[1] Beilinson A. A., Bernstein J., Deligne P., “Faisceaux pervers, 1”, Asterisque, 100, 1982, 5–171 | MR
[2] Bell J., Zhang J., “An isomorphism lemma for graded rings”, Proceedings of the American Mathematical Society, 145 (2017), 989–994 | DOI | MR | Zbl
[3] Chen J., Kim Y., “Graded-irreducible modules are irreducible”, Communications in Algebra, 45:5 (2017), 1907–1913 | DOI | MR | Zbl
[4] DellAmbrogio I., Stevenson G., “On the derived category of a graded commutative Noetherian ring”, Journal of Algebra, 373 (2013), 356–376 | DOI | MR | Zbl
[5] Dickson S. E., “A torsion theory for abelian categories”, Transactions of the American Mathematical Society, 121 (1966), 223–235 | DOI | MR | Zbl
[6] Foxby H. B., “Bounded complexes of flat modules”, Journal of Pure and Applied Algebra, 15:2 (1979), 149–172 | DOI | MR | Zbl
[7] Goldman O., “Rings and modules of quotients”, Journal of Algebra, 13:1 (1969), 10–47 | DOI | MR | Zbl
[8] Heinzer W., Roitman M., “The homogeneous spectrum of a graded commutative ring”, Proceedings of the American Mathematical Society, 130 (2002), 1573–1580 | DOI | MR | Zbl
[9] Hochster M., Local cohomology, Unpublished notes, 2011 https://www.math.lsa.umich.edu/h̃ochster/615W11/loc.pdf
[10] Kanda R., “Classifying Serre subcategories via atom spectrum”, Advances in Mathematics, 231 (2012), 1572–1588 | DOI | MR | Zbl
[11] Krause H., “The stable derived category of a Noetherian scheme”, Compositio Mathematica, 141 (2005), 1128–1162 | DOI | MR | Zbl
[12] Lamber J., Torsion theories, additive semantics, and rings of quotients, Springer, Berlin–Heidelberg, 2006 | DOI | MR
[13] Maranda J.-M., “Injective structures”, Transactions of the American Mathematical Society, 110 (1964), 98–135 | DOI | MR | Zbl
[14] Miyachi J., “Localization of triangulated categories and derived categories”, Journal of Algebra, 141 (1991), 463–483 | DOI | MR | Zbl
[15] Nastasescu C., Oystaeyen F., Graded ring theory, Elsevier, 2011 | MR
[16] Nastasescu C., Oystaeyen F., Methods of graded rings, Springer Science, 2004 | MR | Zbl
[17] Park C., Park M., “Integral closure of a graded Noetherian domain”, Journal of the Korean Mathematical Society, 48 (2011), 449–464 | DOI | MR | Zbl
[18] Popescu N., Abelian categories with applications to rings and modules, Academic Press, 1973 | MR | Zbl
[19] Ratliff L., Rush D., “Two notes on homogeneous prime ideals in graded Noetherian rings”, Journal of Algebra, 264 (2003), 211–230 | DOI | MR | Zbl
[20] Rush D., “Noetherian properties in monoid rings”, Journal of Pure and Applied Algebra, 185 (2003), 259–278 | DOI | MR | Zbl
[21] Smith S., “Category equivalences involving graded modules over path algebras of quivers”, Advances in Mathematics, 230 (2012), 1780–1810 | DOI | MR | Zbl
[22] Tarrio L. A., Lopez A. J., Salorio M. J. S., “Localization in categories of complexes and unbounded resolutions”, Canadian Journal of Mathematics, 52 (2000), 225–247 | DOI | MR | Zbl
[23] Yoshino Y., Yoshizawa T., “Abstract local cohomology functors”, Mathematical Journal of Okayama University, 53 (2011), 129–154 | MR | Zbl