Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2019_53_a0, author = {E. P. Abramova and T. V. Ryazanova}, title = {Analysis of the influence of parametric noise on the dynamics of two interacting populations}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--14}, publisher = {mathdoc}, volume = {53}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a0/} }
TY - JOUR AU - E. P. Abramova AU - T. V. Ryazanova TI - Analysis of the influence of parametric noise on the dynamics of two interacting populations JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2019 SP - 3 EP - 14 VL - 53 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a0/ LA - ru ID - IIMI_2019_53_a0 ER -
%0 Journal Article %A E. P. Abramova %A T. V. Ryazanova %T Analysis of the influence of parametric noise on the dynamics of two interacting populations %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2019 %P 3-14 %V 53 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a0/ %G ru %F IIMI_2019_53_a0
E. P. Abramova; T. V. Ryazanova. Analysis of the influence of parametric noise on the dynamics of two interacting populations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a0/
[1] Alves M. T., Hilker F. M., “Hunting cooperation and Allee effects in predators”, Journal of Theoretical Biology, 419 (2017), 13–22 | DOI | MR | Zbl
[2] Bashkirtseva I., Ryashko L., “Noise-induced extinction in Bazykin–Berezovskaya population model”, The European Physical Journal B, 89:7 (2016), 165 | DOI | MR
[3] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity of 3D-cycles”, Mathematics and Computers in Simulation, 66:1 (2004), 55–67 | DOI | MR | Zbl
[4] Lande R., Engen S., Saether B.-E., Stochastic population dynamics in ecology and conservation, Oxford University Press, 2003 | DOI
[5] Laws A. N., “Climate change effects on predator-prey interactions”, Current Opinion in Insect Science, 23 (2017), 28–34 | DOI
[6] O'Regan S. M., “How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system”, Journal of Biological Dynamics, 12:1 (2017), 211–241 | DOI | MR
[7] Rubin A., Riznichenko G., Mathematical biophysics, Springer, 2014 | Zbl
[8] Turchin P., Complex population dynamics: a theoretical/empirical synthesis, Princeton University Press, 2003 | DOI | MR | Zbl
[9] Alekseev V. V., “Influence of the saturation factor on the dynamics of the predator–prey system”, Biofizika, 18:5 (1973), 922–926 (in Russian)
[10] Bazykin A. D., Nonlinear dynamics of interacting populations, Institute of Computer Science, Izhevsk, 2003 | MR
[11] Bashkirtseva I. A., Boyarshinova P. V., Ryazanova T. V., Ryashko L. B., “Analysis of noise-induced destruction of coexistence regimes in “prey-predator” population model”, Computer Research and Modeling, 8:4 (2016), 647–660 (in Russian) | MR
[12] Bashkirtseva I. A., Karpenko L. V., Ryashko L. B., “Analysis of attractors for stochastically forced “predator-prey” model”, Izvestiya Vuzov. Prikladnaya Nelineinaya Dinamika, 17:2 (2009), 37–53 (in Russian) | DOI | Zbl
[13] Bashkirtseva I. A., Ryashko L. B., “Quasipotential method in local stability analysis of the stochastically forces limit cycles”, Izvestiya Vuzov. Prikladnaya Nelineinaya Dinamika, 9:6 (2001), 104–114 (in Russian) | Zbl
[14] Ventsel' A. D., Freidlin M. I., Fluctuations in dynamical systems under the influence of small random perturbation, Nauka, M., 1979
[15] Gikhman I. I., Skorokhod A. V., Stochastic differential equations and application, Naukova dumka, Kiev, 1982 | MR
[16] Epifanov A. V., Tsybulin V. G., “Regarding the dynamics of cosymmetric predator–prey systems”, Computer Research and Modeling, 9:5 (2017), 799–813 (in Russian) | DOI
[17] Mil'shtein G. N., Ryashko L. B., “A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations”, Journal of Applied Mathematics and Mechanics, 59:1 (1995), 47–56 | DOI | MR | MR
[18] Plyusnina T. Yu., Fursova P. V., Terlova L. D., Riznichenko G. Yu., Mathematical models in biology, Regular and Chaotic Dynamics, M.–Izhevsk, 2014