Analysis of the influence of parametric noise on the dynamics of two interacting populations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the predator-prey population model, which combines both the stabilizing factors of the intraspecific competition of prey and predator (for resources other than the prey), and the predator saturation. The purpose of this study is a comparative parametric analysis of stochastic phenomena which occur under parametric noise of two different types. The stochastic sensitivity of the attractors is studied. Based on the stochastic sensitivity function technique, noise-induced phenomena are described. In the parametric bistable zone, transitions of two types are carried out: equilibrium $ \rightarrow $ equilibrium and cycle $ \rightarrow$ equilibrium. The values of critical intensities for the occurrence of transition phenomena between attractors are obtained. In the parametric monostable zone, such phenomena as cycle deformation and equilibrium shift are demonstrated.
Keywords: population model, parametric noise, noise-induced phenomena.
@article{IIMI_2019_53_a0,
     author = {E. P. Abramova and T. V. Ryazanova},
     title = {Analysis of the influence of parametric noise on the dynamics of two interacting populations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {53},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a0/}
}
TY  - JOUR
AU  - E. P. Abramova
AU  - T. V. Ryazanova
TI  - Analysis of the influence of parametric noise on the dynamics of two interacting populations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 3
EP  - 14
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a0/
LA  - ru
ID  - IIMI_2019_53_a0
ER  - 
%0 Journal Article
%A E. P. Abramova
%A T. V. Ryazanova
%T Analysis of the influence of parametric noise on the dynamics of two interacting populations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 3-14
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a0/
%G ru
%F IIMI_2019_53_a0
E. P. Abramova; T. V. Ryazanova. Analysis of the influence of parametric noise on the dynamics of two interacting populations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a0/

[1] Alves M. T., Hilker F. M., “Hunting cooperation and Allee effects in predators”, Journal of Theoretical Biology, 419 (2017), 13–22 | DOI | MR | Zbl

[2] Bashkirtseva I., Ryashko L., “Noise-induced extinction in Bazykin–Berezovskaya population model”, The European Physical Journal B, 89:7 (2016), 165 | DOI | MR

[3] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity of 3D-cycles”, Mathematics and Computers in Simulation, 66:1 (2004), 55–67 | DOI | MR | Zbl

[4] Lande R., Engen S., Saether B.-E., Stochastic population dynamics in ecology and conservation, Oxford University Press, 2003 | DOI

[5] Laws A. N., “Climate change effects on predator-prey interactions”, Current Opinion in Insect Science, 23 (2017), 28–34 | DOI

[6] O'Regan S. M., “How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system”, Journal of Biological Dynamics, 12:1 (2017), 211–241 | DOI | MR

[7] Rubin A., Riznichenko G., Mathematical biophysics, Springer, 2014 | Zbl

[8] Turchin P., Complex population dynamics: a theoretical/empirical synthesis, Princeton University Press, 2003 | DOI | MR | Zbl

[9] Alekseev V. V., “Influence of the saturation factor on the dynamics of the predator–prey system”, Biofizika, 18:5 (1973), 922–926 (in Russian)

[10] Bazykin A. D., Nonlinear dynamics of interacting populations, Institute of Computer Science, Izhevsk, 2003 | MR

[11] Bashkirtseva I. A., Boyarshinova P. V., Ryazanova T. V., Ryashko L. B., “Analysis of noise-induced destruction of coexistence regimes in “prey-predator” population model”, Computer Research and Modeling, 8:4 (2016), 647–660 (in Russian) | MR

[12] Bashkirtseva I. A., Karpenko L. V., Ryashko L. B., “Analysis of attractors for stochastically forced “predator-prey” model”, Izvestiya Vuzov. Prikladnaya Nelineinaya Dinamika, 17:2 (2009), 37–53 (in Russian) | DOI | Zbl

[13] Bashkirtseva I. A., Ryashko L. B., “Quasipotential method in local stability analysis of the stochastically forces limit cycles”, Izvestiya Vuzov. Prikladnaya Nelineinaya Dinamika, 9:6 (2001), 104–114 (in Russian) | Zbl

[14] Ventsel' A. D., Freidlin M. I., Fluctuations in dynamical systems under the influence of small random perturbation, Nauka, M., 1979

[15] Gikhman I. I., Skorokhod A. V., Stochastic differential equations and application, Naukova dumka, Kiev, 1982 | MR

[16] Epifanov A. V., Tsybulin V. G., “Regarding the dynamics of cosymmetric predator–prey systems”, Computer Research and Modeling, 9:5 (2017), 799–813 (in Russian) | DOI

[17] Mil'shtein G. N., Ryashko L. B., “A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations”, Journal of Applied Mathematics and Mechanics, 59:1 (1995), 47–56 | DOI | MR | MR

[18] Plyusnina T. Yu., Fursova P. V., Terlova L. D., Riznichenko G. Yu., Mathematical models in biology, Regular and Chaotic Dynamics, M.–Izhevsk, 2014