Ultrafilters and maximal linked systems: basic properties and topological constructions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 86-102

Voir la notice de l'article provenant de la source Math-Net.Ru

Ultrafilters (maximal filters) and maximal linked systems on $\pi$-systems with “zero” and “unit” are considered. Different variants of topological equipment and the resulting bitopological spaces are discussed. It is noted that the bitopological space of ultrafilters can be considered as a subspace of the bitopological space of the maximal linked systems. Necessary and sufficient conditions for maximality of the filters and the properties characterizing maximal linked systems which are not ultrafilters are established. Some conditions sufficient for existence of such systems are clarified. Conditions under which bitopological spaces of ultrafilters and maximal linked systems are degenerate (topologies defining the corresponding bitopological space coincide) and the conditions that guarantee nondegeneracy are found. A new variant of the density property of the initial set in the ultrafilter space with topology of Wallman type is given. This variant can be used in constructing extensions for abstract attainability problems with asymptotic constraints.
Keywords: bitopological space, maximal linked systems, ultrafilter.
@article{IIMI_2018_52_a6,
     author = {A. G. Chentsov},
     title = {Ultrafilters and maximal linked systems: basic properties and topological constructions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {86--102},
     publisher = {mathdoc},
     volume = {52},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Ultrafilters and maximal linked systems: basic properties and topological constructions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2018
SP  - 86
EP  - 102
VL  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/
LA  - ru
ID  - IIMI_2018_52_a6
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Ultrafilters and maximal linked systems: basic properties and topological constructions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2018
%P 86-102
%V 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/
%G ru
%F IIMI_2018_52_a6
A. G. Chentsov. Ultrafilters and maximal linked systems: basic properties and topological constructions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 86-102. http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/