Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2018_52_a6, author = {A. G. Chentsov}, title = {Ultrafilters and maximal linked systems: basic properties and topological constructions}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {86--102}, publisher = {mathdoc}, volume = {52}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/} }
TY - JOUR AU - A. G. Chentsov TI - Ultrafilters and maximal linked systems: basic properties and topological constructions JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2018 SP - 86 EP - 102 VL - 52 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/ LA - ru ID - IIMI_2018_52_a6 ER -
%0 Journal Article %A A. G. Chentsov %T Ultrafilters and maximal linked systems: basic properties and topological constructions %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2018 %P 86-102 %V 52 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/ %G ru %F IIMI_2018_52_a6
A. G. Chentsov. Ultrafilters and maximal linked systems: basic properties and topological constructions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 86-102. http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/
[1] Chentsov A. G., “Ultrafilters and maximal linked systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 365–388 | DOI | MR | Zbl
[2] Chentsov A. G., “Superextension as bitopological space”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 49, 55–79 | DOI | Zbl
[3] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Mathematical Journal, 3:2 (2017), 100–121 | DOI | MR
[4] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 24:1 (2018), 257–272 | DOI | MR
[5] Bulinskii A. V., Shiryaev A. N., Theory of random processes, Fizmatlit, M., 2005, 402 pp.
[6] Bell M. G., “Compact ccc non-separable spaces of small weight”, Topology Proceedings, 5 (1980), 11–25 | MR
[7] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $N$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2010, no. 3, 10–17 | DOI
[8] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 11–16 | DOI | Zbl
[9] Engelking R., General topology, PWN — Polish Scientific Publishers, Warszawa, 1977, 626 pp. | MR | MR | Zbl
[10] de Groot J., “Superextensions and supercompactness”, Proc. I Intern. Symp. on Extension Theory of Topological Structures and its Applications, VEB Deutscher Verlag Wiss., Berlin, 1969, 89–90
[11] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977, 238 pp. | MR | Zbl
[12] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fundamenta Mathematicae, 89:1 (1975), 81–91 | DOI | MR | Zbl
[13] Fedorchuk V. V., Filippov V. V., General topology. Base constructions, Fizmatlit, M., 2006, 336 pp.
[14] Kuratowski K., Mostowski A., Set theory, PWN, Warsawa, 1968, vii+417 pp. | MR | MR | Zbl
[15] Chentsov A. G., “Some ultrafilter properties connected with extension constructions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 1, 87–101 | DOI | Zbl
[16] Chentsov A. G., “Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems”, Proceedings of the Steklov Institute of Mathematics, 275, suppl. 1 (2011), 12–39 | DOI | Zbl
[17] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 1, 113–142 | DOI | Zbl