Ultrafilters and maximal linked systems: basic properties and topological constructions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 86-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ultrafilters (maximal filters) and maximal linked systems on $\pi$-systems with “zero” and “unit” are considered. Different variants of topological equipment and the resulting bitopological spaces are discussed. It is noted that the bitopological space of ultrafilters can be considered as a subspace of the bitopological space of the maximal linked systems. Necessary and sufficient conditions for maximality of the filters and the properties characterizing maximal linked systems which are not ultrafilters are established. Some conditions sufficient for existence of such systems are clarified. Conditions under which bitopological spaces of ultrafilters and maximal linked systems are degenerate (topologies defining the corresponding bitopological space coincide) and the conditions that guarantee nondegeneracy are found. A new variant of the density property of the initial set in the ultrafilter space with topology of Wallman type is given. This variant can be used in constructing extensions for abstract attainability problems with asymptotic constraints.
Keywords: bitopological space, maximal linked systems, ultrafilter.
@article{IIMI_2018_52_a6,
     author = {A. G. Chentsov},
     title = {Ultrafilters and maximal linked systems: basic properties and topological constructions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {86--102},
     publisher = {mathdoc},
     volume = {52},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Ultrafilters and maximal linked systems: basic properties and topological constructions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2018
SP  - 86
EP  - 102
VL  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/
LA  - ru
ID  - IIMI_2018_52_a6
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Ultrafilters and maximal linked systems: basic properties and topological constructions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2018
%P 86-102
%V 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/
%G ru
%F IIMI_2018_52_a6
A. G. Chentsov. Ultrafilters and maximal linked systems: basic properties and topological constructions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 86-102. http://geodesic.mathdoc.fr/item/IIMI_2018_52_a6/

[1] Chentsov A. G., “Ultrafilters and maximal linked systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 365–388 | DOI | MR | Zbl

[2] Chentsov A. G., “Superextension as bitopological space”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 49, 55–79 | DOI | Zbl

[3] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Mathematical Journal, 3:2 (2017), 100–121 | DOI | MR

[4] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 24:1 (2018), 257–272 | DOI | MR

[5] Bulinskii A. V., Shiryaev A. N., Theory of random processes, Fizmatlit, M., 2005, 402 pp.

[6] Bell M. G., “Compact ccc non-separable spaces of small weight”, Topology Proceedings, 5 (1980), 11–25 | MR

[7] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $N$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2010, no. 3, 10–17 | DOI

[8] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 11–16 | DOI | Zbl

[9] Engelking R., General topology, PWN — Polish Scientific Publishers, Warszawa, 1977, 626 pp. | MR | MR | Zbl

[10] de Groot J., “Superextensions and supercompactness”, Proc. I Intern. Symp. on Extension Theory of Topological Structures and its Applications, VEB Deutscher Verlag Wiss., Berlin, 1969, 89–90

[11] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977, 238 pp. | MR | Zbl

[12] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fundamenta Mathematicae, 89:1 (1975), 81–91 | DOI | MR | Zbl

[13] Fedorchuk V. V., Filippov V. V., General topology. Base constructions, Fizmatlit, M., 2006, 336 pp.

[14] Kuratowski K., Mostowski A., Set theory, PWN, Warsawa, 1968, vii+417 pp. | MR | MR | Zbl

[15] Chentsov A. G., “Some ultrafilter properties connected with extension constructions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 1, 87–101 | DOI | Zbl

[16] Chentsov A. G., “Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems”, Proceedings of the Steklov Institute of Mathematics, 275, suppl. 1 (2011), 12–39 | DOI | Zbl

[17] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 1, 113–142 | DOI | Zbl