Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2018_52_a3, author = {A. A. Kozlov}, title = {The criterion of uniform global attainability of linear systems}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {47--58}, publisher = {mathdoc}, volume = {52}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2018_52_a3/} }
TY - JOUR AU - A. A. Kozlov TI - The criterion of uniform global attainability of linear systems JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2018 SP - 47 EP - 58 VL - 52 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2018_52_a3/ LA - ru ID - IIMI_2018_52_a3 ER -
%0 Journal Article %A A. A. Kozlov %T The criterion of uniform global attainability of linear systems %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2018 %P 47-58 %V 52 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2018_52_a3/ %G ru %F IIMI_2018_52_a3
A. A. Kozlov. The criterion of uniform global attainability of linear systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 47-58. http://geodesic.mathdoc.fr/item/IIMI_2018_52_a3/
[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, M., 1966, 576 pp. | MR
[2] Zaitsev V. A., Tonkov E. L., “Attainability, compatibility and V. M. Millionshchikov's method of rotations”, Russian Mathematics, 43:2, 42–52 | MR | MR | Zbl
[3] Makarov E. K., Popova S. N., Controllability of asymptotic invariants of non-stationary linear systems, Belarus. Navuka, Minsk, 2012, 407 pp.
[4] Makarov E. K., Popova S. N. The global controllability of a complete set of Lyapunov invariants for two-dimensional linear systems, Differential Equations, 35:1 (1999), 97–107 | MR | Zbl
[5] Bogdanov Yu.S., “On asymptotically equivalent linear differential systems”, Differ. Uravn., 1:6 (1965), 707–716 (in Russian) | MR | Zbl
[6] Demidovich B. P., Lectures on the mathematical stability theory, Moscow State University, M., 1990
[7] Kalman R. E., “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematica Mexicana, 5:1 (1960), 102–119 | MR | Zbl
[8] Tonkov E. L., “A criterion of uniform controllability and stabilization of a linear recurrent system”, Differ. Uravn., 15:10 (1979), 1804–1813 (in Russian) | MR | Zbl
[9] Zaitsev V. A., “Uniform global attainability and global Lyapunov reducibility of linear control systems in the Hessenberg form”, Journal of Mathematical Sciences, 230:5 (2018), 677–682 | DOI | Zbl
[10] Zaitsev V. A., To the theory of stabilization of control systems, Dr. Sci. (Phys.–Math.) Dissertation, Izhevsk, 2015, 293 pp. (In Russian)
[11] Horn R., Johnson C., Matrix analysis, Cambridge University Press, Cambridge, 1988 | MR | MR
[12] Kozlov A. A., Ints I. V., “On uniform global attainability of two-dimensional linear systems with locally integrable coefficients”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:2 (2017), 178–192 (in Russian) | DOI | MR | Zbl
[13] Kozlov A. A., “On a factorization of square matrices with positive determinant”, Trudy Instituta Matematiki, 25:1 (2017), 51–61 (in Russian) | MR
[14] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, M., 1976, 543 pp. | MR
[15] Bortakovskii A. S., Linear algebra in examples and problems, Vysshaya shkola, M., 2005, 591 pp.