The criterion of uniform global attainability of linear systems
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 47-58
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper,
we consider a linear time-varying control system with locally integrable and integrally bounded coefficients
\begin{equation}
\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad
u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1}
\end{equation}
We construct control of the system $(1)$ as a linear feedback
$u=U(t)x$ with a measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system
\begin{equation}
\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2}
\end{equation}
the criterion for its uniform global attainability is established.
The latter property means the existence of $T>0$ such that for any positive $\alpha$ and $\beta$ there exists a $d=d(\alpha,\beta)>0$ such that for any $t_0\geqslant 0$ and for any $(n\times n)$-matrix $H$, $\|H\|\leqslant\alpha$,
$\det H\geqslant\beta$, there exists a measurable on $[t_0,t_0+T]$ gain matrix function $U(\cdot)$ such that $\sup\limits_{t\in [t_0,t_0+T]}\|U(t)\|\leqslant d$ and
$X_U(t_0+T,t_0)=H$, where $X_U$ is the state transition matrix for the system (2).
The proof of the criterion is based on the theorem on the representation of an arbitrary $(n\times n)$-matrix
with a positive determinant in the form of a product of nine upper and lower triangular
matrices with positive diagonal elements and additional conditions on the norm and determinant of these matrices.
Keywords:
linear control system, uniform global attainability.
Mots-clés : state-transition matrix
Mots-clés : state-transition matrix
@article{IIMI_2018_52_a3,
author = {A. A. Kozlov},
title = {The criterion of uniform global attainability of linear systems},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {47--58},
publisher = {mathdoc},
volume = {52},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2018_52_a3/}
}
TY - JOUR AU - A. A. Kozlov TI - The criterion of uniform global attainability of linear systems JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2018 SP - 47 EP - 58 VL - 52 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2018_52_a3/ LA - ru ID - IIMI_2018_52_a3 ER -
%0 Journal Article %A A. A. Kozlov %T The criterion of uniform global attainability of linear systems %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2018 %P 47-58 %V 52 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2018_52_a3/ %G ru %F IIMI_2018_52_a3
A. A. Kozlov. The criterion of uniform global attainability of linear systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 47-58. http://geodesic.mathdoc.fr/item/IIMI_2018_52_a3/