A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 13-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

What can be people's attitude towards risk? In a series of financial economics publications, three main attitudes towards risk are distinguished: risk-averse; risk-neutral; risk-loving. It is inherent for risk-averse decision makers to follow the principle of guaranteed results (maximin). Risk-loving decision makers are prone to following the principle of Niehans–Savage's principle of minimax regret. This article defines the concept of a solution, weakly guaranteed simultaneously for outcomes and risks, to a one-criterion problem with uncertainty (OCPU) (the formalization is based on the concept of a vector saddle point from the theory of multicriteria problems with uncertainty) for risk-neutral decision makers. Sufficient conditions are established with the help of which an explicit form of the introduced solution for a sufficiently general form of OCPU with a limited uncertainty is found.
Keywords: strategy, uncertainty, criterion, Slater optimum, vector saddle point.
Mots-clés : Pareto optimum
@article{IIMI_2018_52_a1,
     author = {V. I. Zhukovskii and M. V. Boldyrev and M. M. Kirichenko},
     title = {A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {13--32},
     publisher = {mathdoc},
     volume = {52},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2018_52_a1/}
}
TY  - JOUR
AU  - V. I. Zhukovskii
AU  - M. V. Boldyrev
AU  - M. M. Kirichenko
TI  - A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2018
SP  - 13
EP  - 32
VL  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2018_52_a1/
LA  - ru
ID  - IIMI_2018_52_a1
ER  - 
%0 Journal Article
%A V. I. Zhukovskii
%A M. V. Boldyrev
%A M. M. Kirichenko
%T A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2018
%P 13-32
%V 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2018_52_a1/
%G ru
%F IIMI_2018_52_a1
V. I. Zhukovskii; M. V. Boldyrev; M. M. Kirichenko. A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 13-32. http://geodesic.mathdoc.fr/item/IIMI_2018_52_a1/

[1] Knight F. H., Risk, Uncertainty and Profit, The Riverside Press, New York, 1921

[2] Chereminov Yu.N., Microeconomics. Advanced level, Info-M, M., 2008, 842 pp.

[3] Zhukovskii V. I., Risks in uncertain situations, URSS, Lenand, M., 2011, 328 pp.

[4] Granitulov V. N., Economical risk, Delo i servis, M., 1990, 112 pp.

[5] Utkin E. A., Risk management, EKMOS, M., 1998, 288 pp.

[6] Sirazetdinov T. K., Sirazetdinov R. T., “Problem of risk and its modeling”, Problemy chelovecheskogo riska, 2007, no. 1, 31–43

[7] Shakhov V. V., Introduction into insurance. Economical aspect, Finansy i statistika, M., 2001, 286 pp.

[8] Tsvetkova E. V., Arlyukova N. O., Risk in economical activities, IVESEP, Saint Petersburg, 2002, 64 pp.

[9] Zhukovskiy V. I., Salukvadze M. E., The vector-valued maximin, Academic Press, New York etc., 1994, 403 pp. | MR | Zbl

[10] Zhukovskiy V. I., Kudryavtsev K. N., “Equilibrating conflicts under uncertainty. I. Analogue of a saddle-point”, Matematicheskaya teoriya igr i ee prilozheniya, 5:1 (2013), 27–44 (in Russian) | Zbl

[11] Zhukovskiy V. I., Kudryavtsev K. N., “Equilibrating conflicts under uncertainty. II. Analogue of a maximin”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2013), 3–45 (in Russian) | MR | Zbl

[12] Zhukovskiy V. I., Chikrii A. A., Soldatova N. G., “Existence of Berge equilibrium in conflicts under uncertainty”, Automation and Remote Control, 77:4 (2016), 640–655 | DOI | MR | Zbl

[13] Zhukovskii V. I., Kudryavtsev K. N., Smirnova L. V., Guaranteed solutions of conflicts and their applications, URSS, Krasand, M., 2002, 368 pp.

[14] Zhukovskiy V. I., Sachkov S. N., Sachkova E. N., “Niehans–Savage risk in solution of one-criterion problem”, East European Science Journal, 37:9 (2018), 42–51

[15] Podinovskii V. V., Nogin V. D., Pareto optimal solutions of multicriteria problems, Fizmatlit, M., 2007, 256 pp.

[16] Vasil'ev F.P., Methods of optimization, Faktorial Press, M., 2003, 824 pp.

[17] Morozov V. V., Sukharev A. G., Fedorov V. V., Research operations in tasks and exercises, Librokom, URSS, M., 2009, 286 pp. | MR

[18] Zhukovskiy V. I., Molostvov V. S., Topchishvili A. L., “Problem of multicurrency deposit diversification — three possible approaches to risk accounting”, International Journal of Operations and Quantitative Management, 20:1 (2014), 1–14 | MR

[19] Kuznetsov S. A., Big thesaurus of the Russian language, Norint, Saint Petersburg, 2003, 1535 pp.

[20] Vorob'ev N. N., Basics of the game theory. Non-coalitional games, Nauka, M., 1984, 495 pp.