Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2018_52_a0, author = {Yu. Averboukh}, title = {Stackelberg solution of first-order mean field game with a~major player}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--12}, publisher = {mathdoc}, volume = {52}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2018_52_a0/} }
TY - JOUR AU - Yu. Averboukh TI - Stackelberg solution of first-order mean field game with a~major player JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2018 SP - 3 EP - 12 VL - 52 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2018_52_a0/ LA - en ID - IIMI_2018_52_a0 ER -
%0 Journal Article %A Yu. Averboukh %T Stackelberg solution of first-order mean field game with a~major player %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2018 %P 3-12 %V 52 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2018_52_a0/ %G en %F IIMI_2018_52_a0
Yu. Averboukh. Stackelberg solution of first-order mean field game with a~major player. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 3-12. http://geodesic.mathdoc.fr/item/IIMI_2018_52_a0/
[1] Aliprantis C., Border K., Infinite dimensional analysis: a Hitchhiker's guide, Springer, Berlin, 2006 | MR | Zbl
[2] Ambrosio L., Gigli N., Savaré G., Gradient flows: in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, Basel, 2005 | MR | Zbl
[3] Averboukh Yu.V., Deterministic limit of mean field games associated with nonlinear Markov processes, Applied Mathematics Optimization, 2018 | DOI
[4] Bensoussan A., Chau M. H.M., Lai Y., Yam S. C. P., “Linear-quadratic mean field Stackelberg games with state and control delays”, SIAM Journal on Control and Optimization, 55:4 (2017), 2748–2781 | DOI | MR | Zbl
[5] Bensoussan A., Chau M. H. M., Yam S. C. P., “Mean field {S}tackelberg games: Aggregation of delayed instructions”, SIAM Journal on Control and Optimization, 53:4 (2015), 2237–2266 | DOI | MR | Zbl
[6] Bensoussan A., Frehse J., Yam P., Mean field games and mean field type control theory, Springer Briefs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl
[7] Bogachev V. I., Measure theory, v. 2, Springer, Berlin, 2007 | MR | Zbl
[8] Cardaliaguet P., Delarue F., Lasry J.-M., Lions P.-L., The master equation and the convergence problem in mean field games, 2015, arXiv: 1509.02505 [math.AP]
[9] Carmona R., Delarue F., “The master equation for large population equilibriums”, Stochastic Analysis and Applications 2014, Springer, Berlin, 2014, 77–128 | DOI | MR | Zbl
[10] Carmona R., Delarue F., Probabilistic theory of mean field games with applications I, Springer, New York, 2018 | DOI | MR | Zbl
[11] Carmona R., Delarue F., Probabilistic theory of mean field games with applications II, Springer, New York, 2018 | DOI | MR | Zbl
[12] Carmona R., Delarue F., Lachapelle A., “Control of McKean–Vlasov dynamics versus mean field games”, Mathematics and Financial Economics, 7:2 (2013), 131–166 | DOI | MR | Zbl
[13] Carmona R., Wang P., “An alternative approach to mean field game with major and minor players, and applications to herders impacts”, Applied Mathematics Optimization, 76:1 (2017), 5–27 | DOI | MR | Zbl
[14] Carmona R., Zhu X., “A probabilistic approach to mean field games with major and minor players”, The Annals of Applied Probability, 26:3 (2016), 1535–1580 | DOI | MR | Zbl
[15] Fischer M., “On the connection between symmetric $n$-player games and mean field games”, The Annals of Applied Probability, 27:2 (2017), 757–810 | DOI | MR | Zbl
[16] Huang J., Wang S., Wu Z., Mean field linear-quadratic-gaussian (LQG) games: major and minor players, 2014, arXiv: 1403.3999 [math.OC] | MR
[17] Huang M., Caines P. E., Malhamé R. P., “Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized $\varepsilon$-Nash equilibria”, IEEE Transactions on Automatic Control, 52:9 (2007), 1560–1571 | DOI | MR | Zbl
[18] Caines P. E., Huang M., Malhamé R. P., “Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle”, Communications in Information and Systems, 6:3 (2006), 221–251 | DOI | MR
[19] Kolokoltsov V. N., Troeva M., On the mean field games with common noise and the McKean-Vlasov SPDEs, 2015, arXiv: 1506.04594 [math.PR]
[20] Lacker D., “Mean field games via controlled martingale problems: existence of Markovian equilibria”, Stochastic Processes and their Applications, 125:7 (2015), 2856–2894 | DOI | MR | Zbl
[21] Lacker D., “A general characterization of the mean field limit for stochastic differential games”, Probability Theory and Related Fields, 165 (2016), 581–648 | DOI | MR | Zbl
[22] Lacker D., On the convergence of closed-loop Nash equilibria to the mean field game limit, 2018, arXiv: 1808.02745 [math.PR] | Zbl
[23] Lasry J.-M., Lions P.-L., “Jeux à champ moyen. I — Le cas stationnaire”, Comptes Rendus Mathematique, 343 (2006), 619–625 | DOI | MR | Zbl
[24] Lasry J.-M., Lions P.-L., “Jeux à champ moyen. II — Horizon fini et contrôle optimal”, Comptes Rendus Mathematique, 343 (2006), 679–684 | DOI | MR | Zbl
[25] Lasry J.-M., Lions P.-L., “Mean field games”, Japanese Journal of Mathematics, 2 (2007), 229–260 | DOI | MR | Zbl
[26] Lasry J.-M., Lions P.-L., “Mean-field games with a major player”, Comptes Rendus Mathematique, 356 (2018), 886–890 | DOI | MR | Zbl
[27] Lions P.-L., College de France course on mean-field games, College de France, 2007–2011 | MR
[28] Nguyen S. L., Huang M., “Mean field LQG games with a major player: Continuum parameters for minor players”, 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, 2011 | DOI | MR
[29] Nguyen S. L., Huang M., “Mean field LQG games with mass behavior responsive to a major player”, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), IEEE, 2012, 5772–5797 | DOI
[30] Shi J., Wang G., Xiong J., Stochastic linear quadratic {S}tackelberg differential game with overlapping information, 2010, arXiv: 1804.07466 [math.OC]