Exact solution of an optimization problem generated by the three-dimensional Laplace equation
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 52-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-parameter family of finite-dimensional spaces consisting of special three-dimensional splines of Lagrangian type is defined (the parameter $N$ is related to the dimension of the spline space). The solution of the boundary value problem for the Laplace equation given in a three-dimensional parallelepiped admits a representation in the form of a sum of four summands: a function linear in each of the three variables, and solutions of three particular boundary value problems generated by the original equation. In turn, these problems give rise to three problems of minimizing the functionals of residuals given in the indicated spline spaces. This decomposition allows one to study only one of the three optimization problems (the other two are symmetric in nature). A system of linear algebraic equations is obtained with respect to the coefficients of the optimal spline that gives the smallest discrepancy. It is shown that the system has a unique solution. The numerical solution of the system reduces to the implementation of the sweep method (the stability of this method holds). Numerical experiments show that with increasing $N,$ the minimum of the residual functional tends to zero.
Keywords: three-dimensional Laplace equation, multivariate spline.
Mots-clés : interpolation
@article{IIMI_2018_51_a2,
     author = {A. N. Mzedawee and V. I. Rodionov},
     title = {Exact solution of an optimization problem generated by the three-dimensional {Laplace} equation},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {52--78},
     publisher = {mathdoc},
     volume = {51},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2018_51_a2/}
}
TY  - JOUR
AU  - A. N. Mzedawee
AU  - V. I. Rodionov
TI  - Exact solution of an optimization problem generated by the three-dimensional Laplace equation
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2018
SP  - 52
EP  - 78
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2018_51_a2/
LA  - ru
ID  - IIMI_2018_51_a2
ER  - 
%0 Journal Article
%A A. N. Mzedawee
%A V. I. Rodionov
%T Exact solution of an optimization problem generated by the three-dimensional Laplace equation
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2018
%P 52-78
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2018_51_a2/
%G ru
%F IIMI_2018_51_a2
A. N. Mzedawee; V. I. Rodionov. Exact solution of an optimization problem generated by the three-dimensional Laplace equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 52-78. http://geodesic.mathdoc.fr/item/IIMI_2018_51_a2/

[1] Rodionov V.I., “On application of special multivariate splines of any degree in the numerical analysis”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 4, 146–153 (in Russian) | DOI

[2] Rodionov V.I., “A method for constructing difference schemes”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 18:5-2 (2013), 2656–2659 (in Russian)

[3] Rodionov V.I., Rodionova N.V., “Exact solution of optimization task generated by simplest heat conduction equation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 141–156 (in Russian) | DOI

[4] Rodionova N.V., “Exact solution of optimization task generated by simplest wave equation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 1, 141–152 (in Russian) | DOI

[5] Rodionov V.I., “On exact solution of optimization problem generated by simplest transfer equation”, Advanced Computer and Information Technologies, Abstracts of Int. Conf., Ural Federal University, Yekaterinburg, 2011, 132–135

[6] Patsko N.L., “Numerical solution of elliptic boundary value problems by the finite element method using $B$-splines”, Comput. Math. Math. Phys., 34:10 (1994), 1225–1236 | MR | Zbl

[7] Kounchev O., Multivariate polysplines: applications to numerical and wavelet analysis, Academic Press, San Diego, 2001, 512 pp. | MR | Zbl

[8] Lai M.J., Schumaker L.L., Spline functions on triangulations, Cambridge University Press, Cambridge, 2007, 608 pp. | DOI | MR | Zbl

[9] Silaev D.A., Korotaev D.O., “Solving of boundary tasks by using $S$-spline”, Computer Research and Modeling, 1:2 (2009), 161–172 (in Russian)

[10] Kuzmenko D., Skorokhodov D., “Optimization of transfinite interpolation of functions with bounded Laplacian by harmonic splines on box partitions”, J. Approx. Theory, 209 (2016), 44–57 | DOI | MR | Zbl