Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2018_51_a2, author = {A. N. Mzedawee and V. I. Rodionov}, title = {Exact solution of an optimization problem generated by the three-dimensional {Laplace} equation}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {52--78}, publisher = {mathdoc}, volume = {51}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2018_51_a2/} }
TY - JOUR AU - A. N. Mzedawee AU - V. I. Rodionov TI - Exact solution of an optimization problem generated by the three-dimensional Laplace equation JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2018 SP - 52 EP - 78 VL - 51 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2018_51_a2/ LA - ru ID - IIMI_2018_51_a2 ER -
%0 Journal Article %A A. N. Mzedawee %A V. I. Rodionov %T Exact solution of an optimization problem generated by the three-dimensional Laplace equation %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2018 %P 52-78 %V 51 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2018_51_a2/ %G ru %F IIMI_2018_51_a2
A. N. Mzedawee; V. I. Rodionov. Exact solution of an optimization problem generated by the three-dimensional Laplace equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 52-78. http://geodesic.mathdoc.fr/item/IIMI_2018_51_a2/
[1] Rodionov V.I., “On application of special multivariate splines of any degree in the numerical analysis”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 4, 146–153 (in Russian) | DOI
[2] Rodionov V.I., “A method for constructing difference schemes”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 18:5-2 (2013), 2656–2659 (in Russian)
[3] Rodionov V.I., Rodionova N.V., “Exact solution of optimization task generated by simplest heat conduction equation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 141–156 (in Russian) | DOI
[4] Rodionova N.V., “Exact solution of optimization task generated by simplest wave equation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 1, 141–152 (in Russian) | DOI
[5] Rodionov V.I., “On exact solution of optimization problem generated by simplest transfer equation”, Advanced Computer and Information Technologies, Abstracts of Int. Conf., Ural Federal University, Yekaterinburg, 2011, 132–135
[6] Patsko N.L., “Numerical solution of elliptic boundary value problems by the finite element method using $B$-splines”, Comput. Math. Math. Phys., 34:10 (1994), 1225–1236 | MR | Zbl
[7] Kounchev O., Multivariate polysplines: applications to numerical and wavelet analysis, Academic Press, San Diego, 2001, 512 pp. | MR | Zbl
[8] Lai M.J., Schumaker L.L., Spline functions on triangulations, Cambridge University Press, Cambridge, 2007, 608 pp. | DOI | MR | Zbl
[9] Silaev D.A., Korotaev D.O., “Solving of boundary tasks by using $S$-spline”, Computer Research and Modeling, 1:2 (2009), 161–172 (in Russian)
[10] Kuzmenko D., Skorokhodov D., “Optimization of transfinite interpolation of functions with bounded Laplacian by harmonic splines on box partitions”, J. Approx. Theory, 209 (2016), 44–57 | DOI | MR | Zbl