Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2018_51_a1, author = {S. P. Kopysov and I. M. Kuz'min and N. S. Nedozhogin and A. K. Novikov and L. E. Tonkov}, title = {Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {42--51}, publisher = {mathdoc}, volume = {51}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2018_51_a1/} }
TY - JOUR AU - S. P. Kopysov AU - I. M. Kuz'min AU - N. S. Nedozhogin AU - A. K. Novikov AU - L. E. Tonkov TI - Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2018 SP - 42 EP - 51 VL - 51 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2018_51_a1/ LA - en ID - IIMI_2018_51_a1 ER -
%0 Journal Article %A S. P. Kopysov %A I. M. Kuz'min %A N. S. Nedozhogin %A A. K. Novikov %A L. E. Tonkov %T Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2018 %P 42-51 %V 51 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2018_51_a1/ %G en %F IIMI_2018_51_a1
S. P. Kopysov; I. M. Kuz'min; N. S. Nedozhogin; A. K. Novikov; L. E. Tonkov. Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 42-51. http://geodesic.mathdoc.fr/item/IIMI_2018_51_a1/
[1] Berndt M., Breil J., Galera S., Kucharik M., Maire P.-H., Shashkov M., “Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian–Eulerian methods”, Journal of Computational Physics, 230:17 (2011), 6664–6687 | DOI | MR | Zbl
[2] Farrell P.E., Piggott M.D., Pain C.C., Gorman G.J., Wilson C.R., “Conservative interpolation between unstructured meshes via supermesh construction”, Computer Methods in Applied Mechanics and Engineering, 198:33–36 (2009), 2632–2642 | DOI | MR | Zbl
[3] de Boer A., van der Shoot M.S., Bijl H., “Mesh deformation based on radial basis function interpolation”, Computers and Structures, 85:11–14 (2007), 784–795 | DOI
[4] De Boer A., Van der Shoot M.S., Bijl H., “New method for mesh moving based on radial basis function interpolation”, ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics (Egmond aan Zee, Netherlands, 2006), 1–16
[5] Wang T.-S., Zhao X., Zhang S., Chen Y.-S., “Development of an aeroelastic modeling capability for transient nozzle flow analysis”, Journal of Propulsion and Power, 30:6 (2014), 1692–1700 | DOI
[6] Novikov A., Piminova N., Kopysov S., Sagdeeva Yu., “Layer-by-layer partitioning of finite element meshes for multicore architectures”, Communications in Computer and Information Science, 687 (2016), 106–117 | DOI
[7] Shepard D., “A two-dimensional interpolation function for irregularly-spaced data”, Proceedings of the 1968 23rd ACM National Conference (1968), 517–524 | DOI
[8] De Marchi S., Schaback R., Wendland H., “Near-optimal data-independent point locations for radial basis function interpolation”, Advances in Computational Mathematics, 23:3 (2005), 317–330 | DOI | MR | Zbl
[9] Rendall T.C.S., Allen C.B., “Efficient mesh motion using radial basis functions with data reduction algorithms”, Journal of Computational Physics, 228:17 (2009), 6231–6249 | DOI | Zbl
[10] Kopysov S., Kuzmin I., Nedozhogin N., Novikov A., Sagdeeva Yu., “Scalable hybrid implementation of the Schur complement method for multi-GPU systems”, The Journal of Supercomputing, 69:1 (2014), 81–88 | DOI