Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In strongly coupled fluid-structure interaction simulations, the fluid dynamics and solid dynamics problems are solved independently on their own meshes. Therefore, it becomes necessary to interpolate the physical properties (pressure, displacement) across two meshes. In the present paper, we propose to accelerate the interpolation process by the method of radial basis functions using the matrix-free solution of the system of equations on a GPU. Also, we reduce the number of equations in the system by using an adaptive algorithm for choosing interpolation points. The adaptive algorithm allows to reduce the number of equations of the interpolation system while preserving the quality of the interpolation. Estimation of the effectiveness of reducing the computational costs based on the matrix-free approach to solving the system, as well as evaluating the quality of interpolation, was carried out using the simulation of the problem of modeling the flow of fluid with a supersonic deformable nozzle.
Keywords: parallel computing, hybrid HPC platforms, fluid-structure interaction, radial basis functions, layer-by-layer partitioning.
@article{IIMI_2018_51_a1,
     author = {S. P. Kopysov and I. M. Kuz'min and N. S. Nedozhogin and A. K. Novikov and L. E. Tonkov},
     title = {Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {51},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2018_51_a1/}
}
TY  - JOUR
AU  - S. P. Kopysov
AU  - I. M. Kuz'min
AU  - N. S. Nedozhogin
AU  - A. K. Novikov
AU  - L. E. Tonkov
TI  - Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2018
SP  - 42
EP  - 51
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2018_51_a1/
LA  - en
ID  - IIMI_2018_51_a1
ER  - 
%0 Journal Article
%A S. P. Kopysov
%A I. M. Kuz'min
%A N. S. Nedozhogin
%A A. K. Novikov
%A L. E. Tonkov
%T Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2018
%P 42-51
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2018_51_a1/
%G en
%F IIMI_2018_51_a1
S. P. Kopysov; I. M. Kuz'min; N. S. Nedozhogin; A. K. Novikov; L. E. Tonkov. Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 42-51. http://geodesic.mathdoc.fr/item/IIMI_2018_51_a1/

[1] Berndt M., Breil J., Galera S., Kucharik M., Maire P.-H., Shashkov M., “Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian–Eulerian methods”, Journal of Computational Physics, 230:17 (2011), 6664–6687 | DOI | MR | Zbl

[2] Farrell P.E., Piggott M.D., Pain C.C., Gorman G.J., Wilson C.R., “Conservative interpolation between unstructured meshes via supermesh construction”, Computer Methods in Applied Mechanics and Engineering, 198:33–36 (2009), 2632–2642 | DOI | MR | Zbl

[3] de Boer A., van der Shoot M.S., Bijl H., “Mesh deformation based on radial basis function interpolation”, Computers and Structures, 85:11–14 (2007), 784–795 | DOI

[4] De Boer A., Van der Shoot M.S., Bijl H., “New method for mesh moving based on radial basis function interpolation”, ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics (Egmond aan Zee, Netherlands, 2006), 1–16

[5] Wang T.-S., Zhao X., Zhang S., Chen Y.-S., “Development of an aeroelastic modeling capability for transient nozzle flow analysis”, Journal of Propulsion and Power, 30:6 (2014), 1692–1700 | DOI

[6] Novikov A., Piminova N., Kopysov S., Sagdeeva Yu., “Layer-by-layer partitioning of finite element meshes for multicore architectures”, Communications in Computer and Information Science, 687 (2016), 106–117 | DOI

[7] Shepard D., “A two-dimensional interpolation function for irregularly-spaced data”, Proceedings of the 1968 23rd ACM National Conference (1968), 517–524 | DOI

[8] De Marchi S., Schaback R., Wendland H., “Near-optimal data-independent point locations for radial basis function interpolation”, Advances in Computational Mathematics, 23:3 (2005), 317–330 | DOI | MR | Zbl

[9] Rendall T.C.S., Allen C.B., “Efficient mesh motion using radial basis functions with data reduction algorithms”, Journal of Computational Physics, 228:17 (2009), 6231–6249 | DOI | Zbl

[10] Kopysov S., Kuzmin I., Nedozhogin N., Novikov A., Sagdeeva Yu., “Scalable hybrid implementation of the Schur complement method for multi-GPU systems”, The Journal of Supercomputing, 69:1 (2014), 81–88 | DOI