Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2018_51_a0, author = {L. I. Danilov}, title = {On the spectrum of a two-dimensional schr\"odinger operator with a homogeneous magnetic field and a periodic electric potential}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--41}, publisher = {mathdoc}, volume = {51}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2018_51_a0/} }
TY - JOUR AU - L. I. Danilov TI - On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2018 SP - 3 EP - 41 VL - 51 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2018_51_a0/ LA - ru ID - IIMI_2018_51_a0 ER -
%0 Journal Article %A L. I. Danilov %T On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2018 %P 3-41 %V 51 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2018_51_a0/ %G ru %F IIMI_2018_51_a0
L. I. Danilov. On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 3-41. http://geodesic.mathdoc.fr/item/IIMI_2018_51_a0/
[1] Novikov S.P., “Two-dimensional Schrödinger operators in periodic fields”, Journal of Soviet Mathematics, 28:1 (1985), 1–20 | DOI | MR | Zbl
[2] Geiler V.A., “The two-dimensional Schrödinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials”, St. Petersburg Math. J., 3:3, (1992), 489–532 | MR
[3] Kuchment P., Floquet theory for partial differential equations, Birkhäuser Verlag, Basel, 1993 | DOI | MR | Zbl
[4] Lyskova A.S., “Topological characteristics of the spectrum of the Schrödinger operator in a magnetic field and in a weak potential”, Theoretical and Mathematical Physics, 65:3 (1985), 1218–1225 | DOI | MR
[5] Geiler V.A., Margulis V.A., “Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice”, Theoretical and Mathematical Physics, 58:3 (1984), 302–310 | DOI | MR
[6] Geiler V.A., Margulis V.A., “Structure of the spectrum of a bloch electron in a magnetic field in a two-dimensional lattice”, Theoretical and Mathematical Physics, 61,:1 (1984), 1049–1056 | DOI
[7] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl
[8] Klopp F., “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Mathematische Annalen, 347:3 (2010), 675–687 | DOI | MR | Zbl
[9] Birman M.Sh., Suslina T.A., “The two-dimensional periodic magnetic Hamiltonian is absolutely continuous”, St. Petersburg Math. J., 9:1 (1998), 21–32 | MR | Zbl
[10] Birman M.Sh., Suslina T.A., “Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR
[11] Morame A., “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electromagnetic potential”, Journal of Physics A: Mathematical and General, 31:37 (1998), 7593–7601 | DOI | MR | Zbl
[12] Birman M.Sh., Shterenberg R.G., Suslina T.A., “Absolute continuity of the spectrum of a two-dimensional Schrödinger operator with potential supported on a periodic system of curves”, St. Petersburg Math. J., 12:6 (2001), 983–1012 | MR | Zbl
[13] Lapin I.S., “Absolute continuity of the spectra of two-dimensional periodic magnetic Schrödinger operator and Dirac operator with potentials in the Zygmund class”, Journal of Mathematical Sciences, 106:3 (2001), 2952–2974 | DOI | MR | Zbl
[14] Shen Z., “Absolute continuity of periodic Schrödinger operators with potentials in the Kato class”, Illinois Journal of Mathematics, 45:3 (2001), 873–893 https://projecteuclid.org/download/pdf_1/euclid.ijm/1258138157 | MR | Zbl
[15] Shterenberg R.G., “Absolute continuity of a two-dimensional magnetic periodic Schrödinger operator with potentials of the type of measure derivative”, Journal of Mathematical Science, 115:6 (2003), 2862–2882 | DOI | MR | Zbl
[16] Shterenberg R.G., “Absolute continuity of the spectrum of two-dimensional periodic Schrödinger operators with positive electric potential”, St. Petersburg Math. J., 13:4 (2002), 659–683 | MR | Zbl
[17] Shterenberg R.G., “Absolute continuity of the spectrum of the two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, Amer. Math. Soc. Transl. Ser. 2, 209 (2003), 191–221 | DOI | MR | Zbl
[18] Danilov L.I., “On the spectra of two-dimensional periodic Schrodinger and Dirac operators”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2002, no. 3 (26), 3–98 (in Russian)
[19] Danilov L.I., “The spectrum of the two-dimensional periodic Schrödinger operator”, Theoretical and Mathematical Physics, 134:3 (2003), 392–403 | DOI | DOI | MR | Zbl
[20] Shterenberg R.G., “Absolute continuity of spectra of two-dimensional periodic Schrödinger operators with strongly subordinate magnetic potentials”, Journal of Mathematical Sciences, 129:4 (2005), 4087–4109 | DOI | MR | Zbl
[21] Danilov L.I., “On the absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schrödinger operators”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2004, no. 1 (29), 49–84 (in Russian)
[22] Thomas L.E., “Time dependent approach to scattering from impurities in a crystal”, Communications in Mathematical Physics, 33:4 (1973), 335–343 https://projecteuclid.org/download/pdf_1/euclid.cmp/1103859334 | DOI | MR
[23] Birman M.Sh., Suslina T.A., “Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity”, St. Petersburg Math. J., 11:2 (2000), 203–232 | MR
[24] Kuchment P., Levendorskiî S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl
[25] Kuchment P., “An overview of periodic elliptic operators”, Bulletin of the American Mathematical Society, 53:3 (2016), 343–414 | DOI | MR | Zbl
[26] Danilov L.I., “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, Journal of Physics A: Mathematical and Theoretical, 42:27 (2009), 275204, 20 pp. | DOI | MR | Zbl
[27] Danilov L.I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators”, Journal of Physics A: Mathematical and Theoretical, 43:21 (2010), 215201, 13 pp. | DOI | MR | Zbl
[28] Danilov L.I., “On the spectrum of a periodic Schrödinger operator with potential in the Morrey space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 25–47 (in Russian) | DOI
[29] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York, 1975, 361 pp. | MR | Zbl
[30] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York, 1972 | MR | Zbl