On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 3-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the two-dimensional Schrödinger operator $\widehat H_B+V$ with a uniform magnetic field $B$ and a periodic electric potential $V$. The absence of eigenvalues (of infinite multiplicity) in the spectrum of the operator $\widehat H_B+V$ is proved if the electric potential $V$ is a nonconstant trigonometric polynomial and the condition $(2\pi )^{-1}\, Bv(K)=Q^{-1}$ for the magnetic flux is fulfilled where $Q\in \mathbb{N}$ and the $v(K)$ is the area of the elementary cell $K$ of the period lattice $\Lambda \subset \mathbb{R}^2$ of the potential $V$. In this case the singular component of the spectrum is absent so the spectrum is absolutely continuous. In this paper, we use the magnetic Bloch theory. Instead of the lattice $\Lambda $ we choose the lattice $\Lambda _{\, Q}=\{ N_1QE^1+N_2E^2:N_j\in \mathbb{Z} , j=1,2\} $ where $E^1$ and $E^2$ are basis vectors of the lattice $\Lambda $. The operator $\widehat H_B+V$ is unitarily equivalent to the direct integral of the operators $\widehat H_B(k)+V$ with $k\in 2\pi K_{\, Q}^*$ acting on the space of magnetic Bloch functions where $K_{\, Q}^*$ is an elementary cell of the reciprocal lattice $\Lambda _{\, Q}^*\subset \mathbb{R}^2$. The proof of the absence of eigenvalues in the spectrum of the operator $\widehat H_B+V$ is based on the following assertion: if $\lambda $ is an eigenvalue of the operator $\widehat H_B+V$, then the $\lambda $ is an eigenvalue of the operators $\widehat H_B(k+i\varkappa )+V$ for all $k,\, \varkappa \in \mathbb{R}^2$ and, moreover, (under the assumed conditions on the $V$ and the $B$) there is a vector $k_0\in \mathbb{C}^2\, \backslash \, \{0\}$ such that the eigenfunctions of the operators $\widehat H_B(k+\zeta k_0)+V$ with $\zeta \in \mathbb{C}$ are trigonometric polynomials $\sum \zeta ^j\Phi _j$ in $\zeta $.
Keywords: Schrödinger operator, spectrum, periodic electric potential, homogeneous magnetic field.
@article{IIMI_2018_51_a0,
     author = {L. I. Danilov},
     title = {On the spectrum of a two-dimensional schr\"odinger operator with a homogeneous magnetic field and a periodic electric potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--41},
     publisher = {mathdoc},
     volume = {51},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2018_51_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2018
SP  - 3
EP  - 41
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2018_51_a0/
LA  - ru
ID  - IIMI_2018_51_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2018
%P 3-41
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2018_51_a0/
%G ru
%F IIMI_2018_51_a0
L. I. Danilov. On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 51 (2018), pp. 3-41. http://geodesic.mathdoc.fr/item/IIMI_2018_51_a0/

[1] Novikov S.P., “Two-dimensional Schrödinger operators in periodic fields”, Journal of Soviet Mathematics, 28:1 (1985), 1–20 | DOI | MR | Zbl

[2] Geiler V.A., “The two-dimensional Schrödinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials”, St. Petersburg Math. J., 3:3, (1992), 489–532 | MR

[3] Kuchment P., Floquet theory for partial differential equations, Birkhäuser Verlag, Basel, 1993 | DOI | MR | Zbl

[4] Lyskova A.S., “Topological characteristics of the spectrum of the Schrödinger operator in a magnetic field and in a weak potential”, Theoretical and Mathematical Physics, 65:3 (1985), 1218–1225 | DOI | MR

[5] Geiler V.A., Margulis V.A., “Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice”, Theoretical and Mathematical Physics, 58:3 (1984), 302–310 | DOI | MR

[6] Geiler V.A., Margulis V.A., “Structure of the spectrum of a bloch electron in a magnetic field in a two-dimensional lattice”, Theoretical and Mathematical Physics, 61,:1 (1984), 1049–1056 | DOI

[7] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl

[8] Klopp F., “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Mathematische Annalen, 347:3 (2010), 675–687 | DOI | MR | Zbl

[9] Birman M.Sh., Suslina T.A., “The two-dimensional periodic magnetic Hamiltonian is absolutely continuous”, St. Petersburg Math. J., 9:1 (1998), 21–32 | MR | Zbl

[10] Birman M.Sh., Suslina T.A., “Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR

[11] Morame A., “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electromagnetic potential”, Journal of Physics A: Mathematical and General, 31:37 (1998), 7593–7601 | DOI | MR | Zbl

[12] Birman M.Sh., Shterenberg R.G., Suslina T.A., “Absolute continuity of the spectrum of a two-dimensional Schrödinger operator with potential supported on a periodic system of curves”, St. Petersburg Math. J., 12:6 (2001), 983–1012 | MR | Zbl

[13] Lapin I.S., “Absolute continuity of the spectra of two-dimensional periodic magnetic Schrödinger operator and Dirac operator with potentials in the Zygmund class”, Journal of Mathematical Sciences, 106:3 (2001), 2952–2974 | DOI | MR | Zbl

[14] Shen Z., “Absolute continuity of periodic Schrödinger operators with potentials in the Kato class”, Illinois Journal of Mathematics, 45:3 (2001), 873–893 https://projecteuclid.org/download/pdf_1/euclid.ijm/1258138157 | MR | Zbl

[15] Shterenberg R.G., “Absolute continuity of a two-dimensional magnetic periodic Schrödinger operator with potentials of the type of measure derivative”, Journal of Mathematical Science, 115:6 (2003), 2862–2882 | DOI | MR | Zbl

[16] Shterenberg R.G., “Absolute continuity of the spectrum of two-dimensional periodic Schrödinger operators with positive electric potential”, St. Petersburg Math. J., 13:4 (2002), 659–683 | MR | Zbl

[17] Shterenberg R.G., “Absolute continuity of the spectrum of the two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, Amer. Math. Soc. Transl. Ser. 2, 209 (2003), 191–221 | DOI | MR | Zbl

[18] Danilov L.I., “On the spectra of two-dimensional periodic Schrodinger and Dirac operators”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2002, no. 3 (26), 3–98 (in Russian)

[19] Danilov L.I., “The spectrum of the two-dimensional periodic Schrödinger operator”, Theoretical and Mathematical Physics, 134:3 (2003), 392–403 | DOI | DOI | MR | Zbl

[20] Shterenberg R.G., “Absolute continuity of spectra of two-dimensional periodic Schrödinger operators with strongly subordinate magnetic potentials”, Journal of Mathematical Sciences, 129:4 (2005), 4087–4109 | DOI | MR | Zbl

[21] Danilov L.I., “On the absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schrödinger operators”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2004, no. 1 (29), 49–84 (in Russian)

[22] Thomas L.E., “Time dependent approach to scattering from impurities in a crystal”, Communications in Mathematical Physics, 33:4 (1973), 335–343 https://projecteuclid.org/download/pdf_1/euclid.cmp/1103859334 | DOI | MR

[23] Birman M.Sh., Suslina T.A., “Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity”, St. Petersburg Math. J., 11:2 (2000), 203–232 | MR

[24] Kuchment P., Levendorskiî S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl

[25] Kuchment P., “An overview of periodic elliptic operators”, Bulletin of the American Mathematical Society, 53:3 (2016), 343–414 | DOI | MR | Zbl

[26] Danilov L.I., “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, Journal of Physics A: Mathematical and Theoretical, 42:27 (2009), 275204, 20 pp. | DOI | MR | Zbl

[27] Danilov L.I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators”, Journal of Physics A: Mathematical and Theoretical, 43:21 (2010), 215201, 13 pp. | DOI | MR | Zbl

[28] Danilov L.I., “On the spectrum of a periodic Schrödinger operator with potential in the Morrey space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 25–47 (in Russian) | DOI

[29] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York, 1975, 361 pp. | MR | Zbl

[30] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York, 1972 | MR | Zbl