Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2017_50_a9, author = {T. K. Yuldashev}, title = {Generalized solvability of the mixed value problem for a nonlinear integro-differential equation of~higher order with a degenerate kernel}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {121--132}, publisher = {mathdoc}, volume = {50}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a9/} }
TY - JOUR AU - T. K. Yuldashev TI - Generalized solvability of the mixed value problem for a nonlinear integro-differential equation of~higher order with a degenerate kernel JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2017 SP - 121 EP - 132 VL - 50 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a9/ LA - ru ID - IIMI_2017_50_a9 ER -
%0 Journal Article %A T. K. Yuldashev %T Generalized solvability of the mixed value problem for a nonlinear integro-differential equation of~higher order with a degenerate kernel %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2017 %P 121-132 %V 50 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a9/ %G ru %F IIMI_2017_50_a9
T. K. Yuldashev. Generalized solvability of the mixed value problem for a nonlinear integro-differential equation of~higher order with a degenerate kernel. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 121-132. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a9/
[1] Aleksandrov V. M., Kovalenko E. V., Problems of continuum mechanics with mixed boundary conditions, Nauka, M., 1986, 336 pp.
[2] Algazin S. D., Kiiko I. A., Flutter of plates and shells, Nauka, M., 2006, 248 pp.
[3] Zamyshlyaeva A. A., “The higher-order Sobolev-type models”, Bulletin of the South Ural State University, Series Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 5–28 (in Russian) | DOI
[4] Pokhozhaev S. I., “On the solvability of quasilinear elliptic equations of arbitrary order”, Mathematics of the USSR-Sbornik, 45:2 (1983), 257–271 | DOI | MR | Zbl | Zbl
[5] Skrypnik I. V., Nonlinear elliptic equations of higher order, Naukova dumka, Kiev, 1973, 219 pp.
[6] Todorov T. G., “On the continuity of generalized bounded solutions of quasi-linear elliptic equations of high order”, Vestnik Leningradskogo Gosudarstvennogo Universiteta, 19 (1975), 56–63 (in Russian) | Zbl
[7] Yuldashev T. K., “Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power”, Computational Mathematics and Mathematical Physics, 52:1 (2012), 105–116 | DOI | MR | Zbl
[8] Yuldashev T. K., “Inverse problem for nonlinear integral differential equation with hyperbolic operator of a high degree”, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Matem. Mekh. Fiz., 5:1 (2013), 69–75 (in Russian) | Zbl
[9] Dzhumabaev D. S., Bakirova E. A., “On the unique solvability of the boundary-value problems for Fredholm integrodifferential equations with degenerate kernel”, Journal of Mathematical Sciences, 220:4 (2017), 440–460 | DOI | MR | Zbl | Zbl
[10] Yuldashev T. K., “Inverse problem for an ordinary integro-differential equation with degenerate kernel and nonlocal integral conditions”, Vestn. Tver. Gos. Univ. Ser. Prikl. Mat., 2016, no. 3, 19–33 (in Russian)
[11] Yuldashev T. K., “An ordinary integro-differential equation with a degenerate kernel and an integral condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 20:4 (2016), 644–655 (in Russian) | DOI
[12] Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii Journal of Mathematics, 38:3 (2017), 547–553 | DOI | MR | Zbl
[13] Il'in V. A., “The solvability of mixed problems for hyperbolic and parabolic equations”, Russian Mathematical Surveys, 15:2 (1960), 85–142 | DOI | MR | Zbl
[14] Lazhetich N. L., “On existence of classic solution of mixed problem for a one dimensional hyperbolic equation of second order”, Differential Equations, 34:5 (1998), 683–695 | MR | Zbl
[15] Martem'yanova N. V., “The Dirichlet problem for an equation of mixed elliptic-hyperbolic type with variable potential”, Russian Mathematics, 59:11 (2015), 36–44 | DOI | MR | Zbl
[16] Moiseev E. I., “On the solution of a nonlocal boundary value problem by the spectral method”, Differential Equations, 35:8 (1999), 1105–1112 | MR | Zbl
[17] Sabitov K. B., “Nonlocal problem for a parabolic-hyperbolic equation in a rectangular domain”, Mathematical Notes, 89:3–4 (2011), 562–567 | DOI | DOI | MR | Zbl
[18] Chernyatin V. A., Justification of Fourier method in mixed problem for partial equations, Moscow State University, M., 1991, 112 pp.
[19] Egamberdiev U., Apakov Yu. P., “On Dirichlet problem for mixed elliptic-hyperbolic equation in three dimensional domain”, Izvestiya Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauki, 1989, no. 3, 51–56 (in Russian)
[20] Yuldashev T. K., “On a mixed differential equation of fourth order”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2016, no. 1(47), 119–128 (in Russian)
[21] Il'in V. A., Moiseev E. I., “Optimization of the boundary control of string vibrations by an elastic force on an arbitrary sufficiently large time interval”, Differential Equations, 42:12 (2006), 1775–1786 | DOI | MR | Zbl
[22] Trenogin V. A., Functional analysis, Nauka, M., 1980, 495 pp.