Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 110-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of optimal control with a convex integral quality index for a linear steady-state control system in the class of piecewise continuous controls with smooth control constraints. In a general case, to solve such a problem, the Pontryagin maximum principle is applied as the necessary and sufficient optimum condition. The main difference from the preceding article [5] is that the terminal part of the convex integral quality index depends not only on slow, but also on fast variables. In a particular case, we derive an equation that is satisfied by an initial vector of the conjugate system. Then this equation is extended to the optimal control problem with the convex integral quality index for a linear system with the fast and slow variables. It is shown that the solution of the corresponding equation as $\varepsilon\to0$ tends to the solution of an equation corresponding to the limit problem. The results obtained are applied to study a problem which describes the motion of a material point in $\mathbb{R}^n$ for a fixed interval of time. The asymptotics of the initial vector of the conjugate system that defines the type of optimal control is built. It is shown that the asymptotics is a power series of expansion.
Keywords: optimal control, singularly perturbed problems, asymptotic expansion, small parameter.
@article{IIMI_2017_50_a8,
     author = {A. A. Shaburov},
     title = {Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {110--120},
     publisher = {mathdoc},
     volume = {50},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a8/}
}
TY  - JOUR
AU  - A. A. Shaburov
TI  - Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2017
SP  - 110
EP  - 120
VL  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a8/
LA  - ru
ID  - IIMI_2017_50_a8
ER  - 
%0 Journal Article
%A A. A. Shaburov
%T Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2017
%P 110-120
%V 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a8/
%G ru
%F IIMI_2017_50_a8
A. A. Shaburov. Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 110-120. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a8/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Interscience Publishers, John Wiley and Sons, Inc., New York–London–Sydney, 1962, VIII+360 pp. | MR | Zbl

[2] Krasovskii N. N., Theory of motion control. Linear systems, Nauka, M., 1968, 476 pp.

[3] Lee E. B., Markus L., Foundations of optimal control theory, John Wiley and Sons, Inc., New York–London–Sydney, 1967, 576 pp. | MR | Zbl

[4] Vasil'eva A. B., Dmitriev M. G., “Singular perturbations in optimal control problems”, Journal of Soviet Mathematics, 34:3 (1986), 1579–1629 | DOI | Zbl | Zbl

[5] Shaburov A. A., “Asymptotic expansion of a solution of a singularly perturbed optimal control problem in the space $\mathbb{R}^n$ with an integral convex performance index”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 2, 2017, 303–310 | DOI

[6] Kokotović P. V., Haddad A. H., “Controllability and time-optimal control of systems with slow and fast models”, IEEE Transactions on Automatic Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[7] Dontchev A. L., Perturbations, approximations and sensitivity analysis of optimal control systems, Springer-Verlag, Berlin–Heidelberg–New York–Tokio, 1983, IV+161 pp. | DOI | MR | Zbl

[8] Kalinin A. I., Semenov K. V., “The asymptotic optimization method for linear singularly perturbed systems with the multidimensional control”, Computational Mathematics and Mathematical Physics, 44:3 (2004), 407–417 | MR | Zbl

[9] Danilin A. R., Parysheva Yu. V., “Asymptotics of the optimal cost functional in a linear optimal control problem”, Doklady Mathematics, 80:1 (2009), 478–481 | DOI | MR | Zbl

[10] Danilin A. R., Kovrizhnykh O. O., “Time-optimal control of a small mass point without environmental resistance”, Doklady Mathematics, 88:1 (2013), 465–467 | DOI | DOI | MR | Zbl