Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2017_50_a8, author = {A. A. Shaburov}, title = {Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {110--120}, publisher = {mathdoc}, volume = {50}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a8/} }
TY - JOUR AU - A. A. Shaburov TI - Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2017 SP - 110 EP - 120 VL - 50 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a8/ LA - ru ID - IIMI_2017_50_a8 ER -
%0 Journal Article %A A. A. Shaburov %T Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2017 %P 110-120 %V 50 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a8/ %G ru %F IIMI_2017_50_a8
A. A. Shaburov. Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 110-120. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a8/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Interscience Publishers, John Wiley and Sons, Inc., New York–London–Sydney, 1962, VIII+360 pp. | MR | Zbl
[2] Krasovskii N. N., Theory of motion control. Linear systems, Nauka, M., 1968, 476 pp.
[3] Lee E. B., Markus L., Foundations of optimal control theory, John Wiley and Sons, Inc., New York–London–Sydney, 1967, 576 pp. | MR | Zbl
[4] Vasil'eva A. B., Dmitriev M. G., “Singular perturbations in optimal control problems”, Journal of Soviet Mathematics, 34:3 (1986), 1579–1629 | DOI | Zbl | Zbl
[5] Shaburov A. A., “Asymptotic expansion of a solution of a singularly perturbed optimal control problem in the space $\mathbb{R}^n$ with an integral convex performance index”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 2, 2017, 303–310 | DOI
[6] Kokotović P. V., Haddad A. H., “Controllability and time-optimal control of systems with slow and fast models”, IEEE Transactions on Automatic Control, 20:1 (1975), 111–113 | DOI | MR | Zbl
[7] Dontchev A. L., Perturbations, approximations and sensitivity analysis of optimal control systems, Springer-Verlag, Berlin–Heidelberg–New York–Tokio, 1983, IV+161 pp. | DOI | MR | Zbl
[8] Kalinin A. I., Semenov K. V., “The asymptotic optimization method for linear singularly perturbed systems with the multidimensional control”, Computational Mathematics and Mathematical Physics, 44:3 (2004), 407–417 | MR | Zbl
[9] Danilin A. R., Parysheva Yu. V., “Asymptotics of the optimal cost functional in a linear optimal control problem”, Doklady Mathematics, 80:1 (2009), 478–481 | DOI | MR | Zbl
[10] Danilin A. R., Kovrizhnykh O. O., “Time-optimal control of a small mass point without environmental resistance”, Doklady Mathematics, 88:1 (2013), 465–467 | DOI | DOI | MR | Zbl