On the construction of a predicate truth set
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 45-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide an approach to constructing a predicate truth set, which we refer to as unlocking of predicate. The approach reduces the problem of searching for a predicate truth set to searching for a set of fixed points of some mappings (hereinafter “unlocking mappings”). Unlocking of predicate gives an extra opportunity to analyze the truth set and to build its elements with desired properties. In this paper, we outline how to build unlocking mappings for some general types of predicates: we give a formal definition of the predicate unlocking operation, rules for the construction and calculation of unlocking mappings and their basic properties. As an illustration, we routinely construct unlocking mappings for predicates “be a Nash equilibrium” and “be non-anticipating mapping”; then on this basis we provide expressions for corresponding truth sets.
Keywords: truth set of predicate, fixed points, Nash equilibrium, nonanticipating mappings.
@article{IIMI_2017_50_a5,
     author = {D. A. Serkov},
     title = {On the construction of a predicate truth set},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {45--61},
     publisher = {mathdoc},
     volume = {50},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a5/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - On the construction of a predicate truth set
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2017
SP  - 45
EP  - 61
VL  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a5/
LA  - ru
ID  - IIMI_2017_50_a5
ER  - 
%0 Journal Article
%A D. A. Serkov
%T On the construction of a predicate truth set
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2017
%P 45-61
%V 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a5/
%G ru
%F IIMI_2017_50_a5
D. A. Serkov. On the construction of a predicate truth set. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 45-61. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a5/

[1] Kakutani S., “A generalization of Brouwer's fixed point theorem”, Duke Math. J., 8:3 (1941), 457–459 | DOI | MR

[2] Nash J., “Non-cooperative games”, Annals of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl

[3] Nikaidô H., “On von Neuman's minimax theorem”, Pacific Journal of Mathematics, 4:1 (1954), 65–72 | DOI | MR | Zbl

[4] Chentsov A. G., “On the structure of a game problem of convergence”, Sov. Math. Dokl., 16:5 (1975), 1404–1408 | MR | Zbl

[5] Chentsov A. G., “On a game problem of guidance”, Sov. Math. Dokl., 17 (1976), 73–77 | Zbl

[6] Chentsov A. G., “Non-anticipating selections of multivalued mappings”, Differ. Uravn. i Protsessy Upr., 1998, no. 2, 1–64 (in Russian)

[7] Chentsov A. G., “Hereditary multiselectors of multivalued mappings and their construction by iterative methods”, Differ. Uravn. i Protsessy Upr., 1999, no. 3, 1–54 (in Russian)

[8] Serkov D. A., “An approach to analysis of the set of truth: unlocking of predicate”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:4 (2016), 525–534 (in Russian) | DOI | Zbl

[9] Serkov D. A., “Unlocking of predicate: application to constructing a non-anticipating selection”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 27:2 (2017), 283–291 | DOI | MR

[10] Kuratowski K., Mostowski A., Set theory, North-Holland, Amsterdam, 1967, 417 pp. | MR

[11] Serkov D. A., “On fixed point theory and its applications to equilibrium models”, Bulletin of the South Ural State University, Series Mathematical Modelling, Programming and Computer Software, 9:1 (2016), 20–31 | DOI | Zbl

[12] Engelking R., General topology, PWN, Warszawa, 1985, 752 pp. | MR

[13] Aubin J.-P., L'analyse non lineaire et ses motivations economiques, Masson, Paris, 1984, 214 pp. | MR

[14] Chentsov A. G., “Nonanticipating multimappings and their construction by the method of program iterations: I”, Differential Equations, 37:4 (2001), 498–509 | DOI | MR | Zbl

[15] Chentsov A. G., “Nonanticipating multimappings and their construction by the method of program iterations: II”, Differential Equations, 37:5 (2001), 713–723 | DOI | MR | Zbl

[16] Tarski A., “A lattice-theoretical fixpoint theorem and its applications”, Pacific Journal of Mathematics, 5:2 (1955), 285–309 | DOI | MR | Zbl