Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2017_50_a3, author = {V. I. Zhukovskii and M. Larbani and L. V. Smirnova}, title = {A new approach to cooperation in a conflict with four members}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {29--35}, publisher = {mathdoc}, volume = {50}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a3/} }
TY - JOUR AU - V. I. Zhukovskii AU - M. Larbani AU - L. V. Smirnova TI - A new approach to cooperation in a conflict with four members JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2017 SP - 29 EP - 35 VL - 50 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a3/ LA - ru ID - IIMI_2017_50_a3 ER -
%0 Journal Article %A V. I. Zhukovskii %A M. Larbani %A L. V. Smirnova %T A new approach to cooperation in a conflict with four members %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2017 %P 29-35 %V 50 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a3/ %G ru %F IIMI_2017_50_a3
V. I. Zhukovskii; M. Larbani; L. V. Smirnova. A new approach to cooperation in a conflict with four members. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 29-35. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a3/
[1] Luce R. D., Raiffa H., Games and decisions, John Wiley and Sons, Inc., New York, 1957, 544 pp. | MR | Zbl
[2] Nash J., “Non-cooperative games”, Annales of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl
[3] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Natl. Acad. Sci. USA, 36:1 (1950), 48–49 | DOI | MR | Zbl
[4] Berge C., Théorie générale des jeux a $n$ personnes, Gauthier-Villar, Paris, 1957, 114 pp. | MR
[5] Zhukovskiy V., Topchishvili A., Sachkov S., “Application of probability measures to the existence problem of Berge–Vaisman guaranteed equilibrium”, Model Assisted Statistics and Applications, 9:3 (2014), 223–239 | DOI
[6] Germeier Yu.B., Non-antagonistic games, Springer Netherlands, Boston, 1986, XIV+376 pp. | MR
[7] Borel E., “La théorie du jeu et les équations intégrales à noyau symétrique”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 173 (1921), 1304–1308 | Zbl
[8] Neumann J.v., “Zur theorie der gesellschaftspiele”, Mathematische Annalen, 100:1 (1928), 295–320 | DOI | MR | Zbl