A new approach to cooperation in a conflict with four members
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 29-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper introduces the concept of coalition rationality. The coalition equilibrium situation (CES) in the conflict of four persons under uncertainty is formalized by unifying the notions of individual and collective rationality (from the theory of cooperative games without side payments) and the definition of coalition rationality given in this paper. Then sufficient conditions for the existence of CES, which reduce to construction of the saddle point of Germeier convolution of payoff function guarantee, are established. Next, according to approach of E. Borel, J. von Neumann, and J. Nash, the existence of CES in mixed strategies is proved under “usual” restrictions for mathematical games theory such as compactness of sets of uncertainties and strategies of players and continuity of payoff functions. In conclusion, the article suggests possible directions for further research.
Keywords: cooperative game without side payments, uncertainty, guarantee, mixed strategy, saddle point, Nash and Berge equilibrium.
Mots-clés : Germeier convolution
@article{IIMI_2017_50_a3,
     author = {V. I. Zhukovskii and M. Larbani and L. V. Smirnova},
     title = {A new approach to cooperation in a conflict with four members},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {29--35},
     publisher = {mathdoc},
     volume = {50},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a3/}
}
TY  - JOUR
AU  - V. I. Zhukovskii
AU  - M. Larbani
AU  - L. V. Smirnova
TI  - A new approach to cooperation in a conflict with four members
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2017
SP  - 29
EP  - 35
VL  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a3/
LA  - ru
ID  - IIMI_2017_50_a3
ER  - 
%0 Journal Article
%A V. I. Zhukovskii
%A M. Larbani
%A L. V. Smirnova
%T A new approach to cooperation in a conflict with four members
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2017
%P 29-35
%V 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a3/
%G ru
%F IIMI_2017_50_a3
V. I. Zhukovskii; M. Larbani; L. V. Smirnova. A new approach to cooperation in a conflict with four members. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 29-35. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a3/

[1] Luce R. D., Raiffa H., Games and decisions, John Wiley and Sons, Inc., New York, 1957, 544 pp. | MR | Zbl

[2] Nash J., “Non-cooperative games”, Annales of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl

[3] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Natl. Acad. Sci. USA, 36:1 (1950), 48–49 | DOI | MR | Zbl

[4] Berge C., Théorie générale des jeux a $n$ personnes, Gauthier-Villar, Paris, 1957, 114 pp. | MR

[5] Zhukovskiy V., Topchishvili A., Sachkov S., “Application of probability measures to the existence problem of Berge–Vaisman guaranteed equilibrium”, Model Assisted Statistics and Applications, 9:3 (2014), 223–239 | DOI

[6] Germeier Yu.B., Non-antagonistic games, Springer Netherlands, Boston, 1986, XIV+376 pp. | MR

[7] Borel E., “La théorie du jeu et les équations intégrales à noyau symétrique”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 173 (1921), 1304–1308 | Zbl

[8] Neumann J.v., “Zur theorie der gesellschaftspiele”, Mathematische Annalen, 100:1 (1928), 295–320 | DOI | MR | Zbl