Persecution of a group of rigidly coordinated evaders in a linear problem with fractional derivatives
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the finite-dimensional Euclidean space, the problem of pursuit of a group of evaders by a pursuit group is considered, which is described by a system of the form $$D^{(\alpha)} z_{ij} = u_i - v,$$ where $D^{(\alpha)} f$ is the Caputo derivative of order $\alpha \in (0,1)$ of the function $f$. It is assumed that all evaders use the same control. The goal of the pursuers is to catch at least one of the evaders. The goal of the fleeing is to evade the meeting. The evaders use piecewise-program strategies, while the pursuers use piecewise-program counterstrategies. The set of admissible controls is a ball of unit radius with the center at the origin, the target sets being the origin. Sufficient conditions for the capture and sufficient conditions for the evasion are obtained in terms of initial positions and game parameters.
Keywords: differential game, group persecution, pursuer, runaway, fractional derivatives.
@article{IIMI_2017_50_a1,
     author = {A. I. Bichurina},
     title = {Persecution of a group of rigidly coordinated evaders in a linear problem with fractional derivatives},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {13--20},
     publisher = {mathdoc},
     volume = {50},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a1/}
}
TY  - JOUR
AU  - A. I. Bichurina
TI  - Persecution of a group of rigidly coordinated evaders in a linear problem with fractional derivatives
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2017
SP  - 13
EP  - 20
VL  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a1/
LA  - ru
ID  - IIMI_2017_50_a1
ER  - 
%0 Journal Article
%A A. I. Bichurina
%T Persecution of a group of rigidly coordinated evaders in a linear problem with fractional derivatives
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2017
%P 13-20
%V 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a1/
%G ru
%F IIMI_2017_50_a1
A. I. Bichurina. Persecution of a group of rigidly coordinated evaders in a linear problem with fractional derivatives. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 13-20. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a1/

[1] Pshenichnyi B. N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485 | DOI | MR

[2] Chernous'ko F. L., “A problem of evasion from many pursuers”, J. Appl. Math. Mech., 40:1 (1976), 11–20 | DOI | Zbl

[3] Rikhsiev B. B., Differential games with simple mothion, Fan, Tashkent, 1989, 232 pp.

[4] Chikrii A. A., Conflict-controlled processes, Springer Netherlands, 1997, XX+404 pp. | DOI | MR

[5] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, M., 1990, 197 pp.

[6] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp.

[7] Satimov N., Mamatov M. Sh., “On problems of pursuit and evasion away from meeting and differential games between groups of pursuers and evaders”, Dokl. Akad. Nauk Uzbekskoi SSR, 4 (1983), 3–6 (in Russian)

[8] Petrov N. N., “Simple pursuit after a group of evaders”, Autom. Remote Control, 58:12 (1997), 1914–1919 | MR | Zbl

[9] Vagin D. A., Petrov N. N., “A problem of the pursuit of a group of rigidly connected evaders”, J. Comput. Syst. Sci. Int., 40:5 (2001), 749–753 | MR | Zbl

[10] Vagin D. A., Petrov N. N., “A problem of group pursuit with phase constraints”, J. Appl. Math. Mech., 66:2 (2002), 225–232 | DOI | MR | Zbl

[11] Vagin D. A., Petrov N. N., “Pursuit of a group of evaders in the Pontryagin example”, J. Appl. Math. Mech., 68:4 (2004), 555–560 | DOI | MR | Zbl

[12] Blagodatskikh A. I., “Two non-stationary pursuit problems of a rigidly connected evaders”, Vestn. Udmurt. Univ. Mat. Mech. Komp'yut. Nauki, 2008, no. 1, 47–60 (in Russian) | DOI

[13] Blagodatskikh A. I., “Multiple capture of rigidly coordinated evaders”, Vestn. Udmurt. Univ. Mat. Mech. Komp'yut. Nauki, 26:1 (2016), 46–57 (in Russian) | DOI | Zbl

[14] Petrov N. N., Solov'eva N. A., “Problem of pursuit of a group of coordinated evaders in linear recurrent differential games”, J. Comput. Syst. Sci. Int., 51:6 (2012), 770–778 | DOI | MR | Zbl

[15] Vinogradova M. N., “On the capture of two evaders in a simple pursuit-evasion problem with phase restrictions”, Vestn. Udmurt. Univ. Mat. Mech. Komp'yut. Nauki, 2011, no. 4, 3–8 (in Russian) | DOI

[16] Vinogradova M. N., Petrov N. N., Solov'eva N. A., “Capture of two cooperative evaders in linear recurrent differential games”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 19, no. 1, 2013, 41–48 (in Russian)

[17] Petrov N. N., “About controllability of autonomous systems”, Differ. Uravn., 4:4 (1968), 606–617 (in Russian) | Zbl

[18] Chikrii A. A., Matichin I. I., “On an analogue of the Cauchy formula for linear systems of any fractional order”, Reports of the National Academy of Sciences of Ukraine, 2007, no. 1, 50–55