On a density property of weakly absolutely continuous measures. General case
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that some set of all step functions (and the set of all uniform limits of such functions) allows an embedding into a compact subset (with respect to weak-star topology) of the set of all finitely additive measures of bounded variation in the form of an everywhere dense subset. In particular, we consider the set of all step functions (the set of all uniform limits of such functions) such that an integral of absolute value of the functions with respect to nonnegative finitely additive measure $\lambda$ is equal to unity. For these sets, the possibility of embedding is proved without any additional assumptions on $\lambda$; this generalizes the previous results. Using the Sobczyk–Hammer decomposition theorem, we show that for $\lambda$ with the finite range, the above-mentioned sets of functions allow an embedding into the unit sphere (in the strong norm-variation) of weakly absolutely continuous measures with respect to $\lambda$ in the form of an everywhere dense subset. For $\lambda$ with an infinite range, the above-mentioned sets of functions allow an embedding into the unit ball of weakly absolutely continuous measures with respect to $\lambda$ in the form of an everywhere dense subset. The results can be helpful for an extension of linear impulse control problems in the class of finitely additive measures to obtain robust representations of reachable sets given by constraints of asymptotic character.
Keywords: finitely additive measures, weak absolute continuity, weak-star topology, nonatomic or atomless measures, Sobczyk–Hammer decomposition.
@article{IIMI_2017_50_a0,
     author = {A. P. Baklanov},
     title = {On a density property of weakly absolutely continuous measures. {General} case},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {50},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a0/}
}
TY  - JOUR
AU  - A. P. Baklanov
TI  - On a density property of weakly absolutely continuous measures. General case
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2017
SP  - 3
EP  - 12
VL  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a0/
LA  - ru
ID  - IIMI_2017_50_a0
ER  - 
%0 Journal Article
%A A. P. Baklanov
%T On a density property of weakly absolutely continuous measures. General case
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2017
%P 3-12
%V 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a0/
%G ru
%F IIMI_2017_50_a0
A. P. Baklanov. On a density property of weakly absolutely continuous measures. General case. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 3-12. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a0/

[1] Baklanov A. P., “A game problem with asymptotic impulse control”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 3, 3–14 (in Russian) | DOI

[2] Baklanov A. P., “On the representation of maximin of an impulse control problem”, Differentsial'nye Uravneniya i Protsessy Upravleniya, 2012, no. 3, 49–69 (in Russian)

[3] Bourbaki N., Topologie Générale (General Topology), Hermann, Paris, 1961 | MR

[4] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972, 531 pp. | DOI | MR | Zbl

[5] Gamkrelidze R., Principles of optimal control theory, Plenum, New York, 1978, 175 pp. | DOI | MR | Zbl

[6] Dunford N. J., Schwartz J. T., Linear operators, v. I, General theory, Interscience, New York, 1958, 874 pp. | MR | Zbl

[7] Kelley J. L., General Topology, Van Nostrand, New York, 1955, 298 pp. | MR | Zbl

[8] Krasovskii N. N., Theory of motion control, Nauka, M., 1968, 476 pp.

[9] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981, 287 pp.

[10] Chentsov A. G., The elements of finitely additive measures theory, v. I, USTU–UPI, Yekaterinburg, 2008

[11] Chentsov A. G., “About presentation of maximin in the game problem with constraints of asymptotic character”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 3, 104–119 (in Russian) | DOI

[12] Baklanov A. P., “On density properties of weakly absolutely continuous measures”, CEUR Workshop Proceedings, 1662, 2016, 62–72

[13] Bhaskara Rao K. P.S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Academic Press, New York, 1983, 315 pp. | DOI | MR | Zbl

[14] Chentsov A. G., Asymptotic attainability, Kluwer, Dordrecht, 1997, 322 pp. | DOI | MR | Zbl

[15] Chentsov A. G., “Correct expansion of some unstable problems of statistical information processing”, Cybernet. Systems Anal., 37:2 (2001), 235–250 | DOI | MR | Zbl

[16] Chentsov A. G., “Finitely additive measures and extensions of abstract control problems”, J. Math. Sci. (N.Y.), 133:2 (2006), 1045–1206 | DOI | MR | Zbl

[17] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer, Dordrecht, 2002, 408 pp. | DOI | MR | Zbl

[18] Sobczyk A., Hammer P. C., “A decomposition of additive set functions”, Duke Math. J., 11:4 (1944), 839–846 | DOI | MR | Zbl