Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2017_50_a0, author = {A. P. Baklanov}, title = {On a density property of weakly absolutely continuous measures. {General} case}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--12}, publisher = {mathdoc}, volume = {50}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2017_50_a0/} }
TY - JOUR AU - A. P. Baklanov TI - On a density property of weakly absolutely continuous measures. General case JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2017 SP - 3 EP - 12 VL - 50 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2017_50_a0/ LA - ru ID - IIMI_2017_50_a0 ER -
%0 Journal Article %A A. P. Baklanov %T On a density property of weakly absolutely continuous measures. General case %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2017 %P 3-12 %V 50 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2017_50_a0/ %G ru %F IIMI_2017_50_a0
A. P. Baklanov. On a density property of weakly absolutely continuous measures. General case. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 50 (2017), pp. 3-12. http://geodesic.mathdoc.fr/item/IIMI_2017_50_a0/
[1] Baklanov A. P., “A game problem with asymptotic impulse control”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 3, 3–14 (in Russian) | DOI
[2] Baklanov A. P., “On the representation of maximin of an impulse control problem”, Differentsial'nye Uravneniya i Protsessy Upravleniya, 2012, no. 3, 49–69 (in Russian)
[3] Bourbaki N., Topologie Générale (General Topology), Hermann, Paris, 1961 | MR
[4] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972, 531 pp. | DOI | MR | Zbl
[5] Gamkrelidze R., Principles of optimal control theory, Plenum, New York, 1978, 175 pp. | DOI | MR | Zbl
[6] Dunford N. J., Schwartz J. T., Linear operators, v. I, General theory, Interscience, New York, 1958, 874 pp. | MR | Zbl
[7] Kelley J. L., General Topology, Van Nostrand, New York, 1955, 298 pp. | MR | Zbl
[8] Krasovskii N. N., Theory of motion control, Nauka, M., 1968, 476 pp.
[9] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981, 287 pp.
[10] Chentsov A. G., The elements of finitely additive measures theory, v. I, USTU–UPI, Yekaterinburg, 2008
[11] Chentsov A. G., “About presentation of maximin in the game problem with constraints of asymptotic character”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 3, 104–119 (in Russian) | DOI
[12] Baklanov A. P., “On density properties of weakly absolutely continuous measures”, CEUR Workshop Proceedings, 1662, 2016, 62–72
[13] Bhaskara Rao K. P.S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Academic Press, New York, 1983, 315 pp. | DOI | MR | Zbl
[14] Chentsov A. G., Asymptotic attainability, Kluwer, Dordrecht, 1997, 322 pp. | DOI | MR | Zbl
[15] Chentsov A. G., “Correct expansion of some unstable problems of statistical information processing”, Cybernet. Systems Anal., 37:2 (2001), 235–250 | DOI | MR | Zbl
[16] Chentsov A. G., “Finitely additive measures and extensions of abstract control problems”, J. Math. Sci. (N.Y.), 133:2 (2006), 1045–1206 | DOI | MR | Zbl
[17] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer, Dordrecht, 2002, 408 pp. | DOI | MR | Zbl
[18] Sobczyk A., Hammer P. C., “A decomposition of additive set functions”, Duke Math. J., 11:4 (1944), 839–846 | DOI | MR | Zbl