Berge equilibrium in normal form static games: a literature review
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 49 (2017), pp. 80-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a literature review of Berge equilibrium (BE) in normal form static games. The review shows that research on BE has gained momentum in the last few years as this equilibrium is now grounded in game theory, philosophy and social interaction. It captures mutual support, cooperation and coordination, and models altruism and the moral Golden Rule in normal form games. Mathematical investigation of Berge equilibrium is advanced but not complete; more research is needed in the areas related to its existence and computation. Application of BE in real-world socio-economic interactions where players are mutually supportive is an almost unexplored area of research.
Keywords: Berge equilibrium, mutual support, cooperation, Golden Rule, determination of BE, existence of BE, computation of BE.
Mots-clés : altruism
@article{IIMI_2017_49_a3,
     author = {M. Larbani and V. I. Zhukovskii},
     title = {Berge equilibrium in normal form static games: a literature review},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {80--110},
     publisher = {mathdoc},
     volume = {49},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2017_49_a3/}
}
TY  - JOUR
AU  - M. Larbani
AU  - V. I. Zhukovskii
TI  - Berge equilibrium in normal form static games: a literature review
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2017
SP  - 80
EP  - 110
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2017_49_a3/
LA  - en
ID  - IIMI_2017_49_a3
ER  - 
%0 Journal Article
%A M. Larbani
%A V. I. Zhukovskii
%T Berge equilibrium in normal form static games: a literature review
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2017
%P 80-110
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2017_49_a3/
%G en
%F IIMI_2017_49_a3
M. Larbani; V. I. Zhukovskii. Berge equilibrium in normal form static games: a literature review. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 49 (2017), pp. 80-110. http://geodesic.mathdoc.fr/item/IIMI_2017_49_a3/

[1] Abalo K.Y., Kostreva M.M., “Equi-well-posed games”, Journal of Optimization Theory and Applications, 89:1 (1996), 89–99 | DOI | MR | Zbl

[2] Abalo K.Y., Kostreva M.M., “Fixed points, Nash games and their organization”, Topological Methods in Nonlinear Analysis, 8:1 (1996), 205–215 | DOI | MR | Zbl

[3] Abalo K.Y., Kostreva M.M., “Intersection theorems and their applications to Berge equilibria”, Applied Mathematics and Computation, 182:2 (2006), 1840–1848 | DOI | MR | Zbl

[4] Abalo K.Y., Kostreva M.M., “Berge equilibrium: some recent results from fixed-point theorems”, Applied Mathematics and Computation, 169:1 (2005), 624–638 | DOI | MR | Zbl

[5] Abalo K.Y., Kostreva M.M., “Some existence theorems of Nash and Berge equilibria”, Applied Mathematics Letters, 17:5 (2004), 569–573 | DOI | MR | Zbl

[6] Bel'skikh Yu.A., Zhukovskii V.I., Samsonov S.P., “Altruistic (Berge) equilibrium in the model of Bertrand duopoly”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:1 (2016), 27–45 (In Russian) | DOI | MR | Zbl

[7] Berge C., Theorie generale des jeux a $n$ personnes, Gauthier-Villars, Paris, 1957, 114 pp. | MR

[8] Boribekova K.A., Jarkynbayev S., “Equilibrium of Berge in one differential-difference game”, Multicriteria dynamical problems under uncertainty, Proc. of All-Russian conf. (Orekhovo-Zuevo, Russia, 1991), 83–86 (In Russian)

[9] Colman A.M., Game theory and its applications in the social and biological sciences, Butterworth-Heinemann, Oxford, 1995, 375 pp.

[10] Colman A.M., Körner T.W., Musy O., Tazdaït T., “Mutual support in games: some properties of Berge equilibria”, Journal of Mathematical Psychology, 55:2 (2011), 166–175 | DOI | MR | Zbl

[11] Corley H.W., Kwain P., “An algorithm for computing all Berge equilibria”, Game Theory, 2015 (2015), 862842, 2 pp. | DOI | MR | Zbl

[12] Courtois P., Nessah R., Tazdaït T., “How to play games? Nash versus Berge behaviour rules”, Economics and Philosophy, 31:1 (2015), 123–139 | DOI

[13] Deghdak M., “On the existence of Berge equilibrium with pseudocontinuous payoffs”, ROMAI J., 10:1 (2014), 25–37 | MR | Zbl

[14] Demyanov V.F., Malozemov V.I., Introduction to minimax, Nauka, M., 1972 (In Russian) | MR

[15] Dinovsky V.D., Existence d'un point d'equilibre de Berge?, Multicriteria dynamical problems under uncertainty, Proc. of All-Russian conf. (Orekhovo-Zuevo, Russia, 1991), 75–77 (In Russian)

[16] Dumitrescu D., Lung R., Gasko N., Nagy R., “Equilibria detection in non-cooperative game theory: an evolutionary approach”, Proceedings of the 4th World Congress of the Game Theory Society (Istanbul, Turkey, July 22–26, 2012)

[17] Gaidov S.D., “Optimal strategies in two-player stochastic differential games”, C. R. Acad. Bulg. Sci., 39 (1986), 33–36 | MR | Zbl

[18] Gaidov S.D., “Berge-equilibrium in stochastic differential games”, Mathematica Balkanica. New Series, 1 (1987), 25–32 | MR | Zbl

[19] Gintchev I.A., “Method to obtain Berge equilibrium in bimatrix games”, Multicriteria dynamical problems under uncertainty, Proc. of All-Russian conf. (Orekhovo-Zuevo, Russia, 1991), 78–82 (In Russian)

[20] Glicksberg I.L., “A further generalization of the Kakutani fixed theorem, with application to Nash equilibrium points”, Proc. Amer. Math. Soc., 3:1 (1952), 170–174 | DOI | MR

[21] Gorbatov A.S., Zhukovskiy V.I., “Berge equilibrium in Bertrand oligopoly with import”, Tavricheskii Vestnik Informatiki i Matematiki, 2015, no. 2 (27), 55–64 (In Russian)

[22] Guseinov A.A., Zhukovskiy V.I., Kudryavtsev K.N., Mathematical foundations of moral Golden rule, Editorial URSS, M., 2016, 280 pp.

[23] Kakutani S.A., “A generalization of Brouwer's fixed point theorem”, Duke Math. J., 8:3 (1941), 457–459 | DOI | MR

[24] Keskin K., Çagri Sağlam H., “On the existence of Berge equilibrium: an order theoretic approach”, Int. Game Theory Rev., 17:3 (2015), 1550007, 9 pp. | DOI | MR | Zbl

[25] Krim F., An in depth study of Berge equilibrium, Master's Dissertation, Faculty of Exact Sciences, University of Tizi-Ouzou, Algeria, 2001

[26] Larbani M., “Sur l'existence de l'equilibre de Berge pour un jeu a $n$-personnes”, Optimisation et decision: Actes des Deuxiemes journees francophones de recherche operationnelle, Francoro'98, eds. F. Ben Abdelaziz, M. Haouari, K. Mellouli, Centre de Publication Universitaire de Tunisie, 2000, 291–300

[27] Larbani M., Krim F., “Berge Equilibrium”, An in depth study of Berge equilibrium, Master's Dissertation, Faculty of Exact Sciences, University of Tizi-Ouzou, Algeria, 2001, 14–44

[28] Larbani M., Nessah R., “A note on the existence of Berge and Berge–Nash equilibria”, Mathematical Social Sciences, 55:2 (2008), 258–271 | DOI | MR | Zbl

[29] Ledyard J.O., “Public goods: a survey of experimental research”, The Handbook of Experimental Economics, eds. J.H. Kagel, A.E. Roth, Princeton University Press, Princeton, 1995, 111–194

[30] Lung R.I., Suciu M., Gaskó N., Dumitrescu D., “Characterization and detection of $\varepsilon$-Berge–Zhukovskii equilibria”, PLOS ONE, 10:7 (2015), e0131983 | DOI

[31] Mashchenko S.O., “Individually-optimal equilibria of non-cooperative games in preference relations”, Cybernetics and Systems Analysis, 45:1 (2009), 153–159 | DOI | MR | Zbl

[32] Musy O., Pottier A., Tazdait T., “A new theorem to find Berge equilibria”, Int. Game Theory Rev., 14:1 (2012), 1250005, 10 pp. | DOI | MR | Zbl

[33] Nash J., “Non-cooperative games”, Annals of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl

[34] Nash J.F., “Equilibrium points in $n$-person games”, Proc. Natl. Acad. Sci. USA, 36:1 (1950), 48–49 | DOI | MR | Zbl

[35] Nessah R., Larbani M., “$g$-maximum equality”, Proceedings of the 3rd International Conference on Nonlinear Analysis and Convex Analysis (Tokyo, 2003), eds. W. Takahashi, T. Tanaka, Yokohama Publishers, Yokohama, 2004, 391–400 | MR | Zbl

[36] Nessah R., Larbani M., Tazdait T., “A note on Berge equilibrium”, Appl. Math. Lett., 20:8 (2007), 926–932 | DOI | MR | Zbl

[37] Nessah R., Larbani M., Tazdait T., On Berge equilibrium, CIRED Working Papers, HAL Id: halshs-00271452, , 2007 https://halshs.archives-ouvertes.fr/halshs-00271452

[38] Pottier A., Nessah R. Berge–Vaisman and Nash equilibria: transformation of games, Int. Game Theory Rev., 16:4 (2014), 1450009, 8 pp. | DOI | MR | Zbl

[39] Radjef M., “Sur l'existence d'un equilibre de Berge pour un jeu différentiel à $n$-personnes”, Cahiers Mathématiques de l'Université d'Oran, 1 (1988), 89–93 | MR | Zbl

[40] Sally D., “Conversation and cooperation in social dilemmas: a meta-analysis of experiments from 1958 to 1992”, Rationality and Society, 7:1 (1995), 58–92 | DOI

[41] Sen A., “Goals commitment and identity”, The Journal of Law, Economics, and Organization, 1:2 (1985), 341–355 | DOI

[42] Sen A., On ethics and economics, Basil Blackwell, Oxford, 1987, 146 pp.

[43] Shubik M., “Review: the general theory of $n$-person games by Claude Berge”, Econometrica, 29:4 (1961), 821 | DOI

[44] Vaisman K.S., “The Berge equilibrium”: Zhukovskii V.I., Chikrii A.A., Linear-quadratic differential games, Naukova Dumka, Kiev, 1994, 119–142 (In Russian)

[45] Vaisman K.S., The Berge equilibrium, Cand. Sci. (Phys.-Math.) Dissertation, St. Petersburg, 1995, 110 pp. (In Russian)

[46] Vaisman K.S., “Nash bargaining solution under uncertainty”: Zhukovskiy V.I., Cooperative games under uncertainty, Editorial URSS, M., 1999, 231–249 (In Russian) | MR

[47] Vaisman K.S., Zhukovskiy V.I., “The Berge equilibrium under uncertainty”, Multicriteria dynamical problems under uncertainty, Proc. of All-Russian conf. (Orekhovo-Zuevo, Russia, 1994), 97–98 (In Russian)

[48] Vaisman K.S., Zhukovskiy V.I., “Properties of Berge equilibrium”, Mathematical problems of ecology, Proc. of All-Russian conf. (Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, 1994), 27–28 (In Russian)

[49] van Dam E., Rationality and the golden rule, Working Paper, Tilburg University, Tilburg, 2014, 18 pp.

[50] Vysokos M.I., Zhukovskii V.I., “Golden rule in Cournot duopoly model”, Tavricheskii Vestnik Informatiki i Matematiki, 2015, no. 2 (27), 46–54 (In Russian)

[51] Zhitomirskiy G.I., Vaisman K.S., “Berge equilibrium”, Complex dynamical systems, Pskov Pedagogical Institute, Pskov, 1994, 52–57 (In Russian)

[52] Zhukovskiy V.I., “Some problems of non-antagonistic differential games”, Mathematical methods in operations research, Bulgarian Academy of Sciences, Sofia, 1985, 103–195 (In Russian)

[53] Zhukovskiy V.I., Introduction to differential games under uncertainty. Berge–Vaisman equilibrium, Editorial URSS, M., 2010, 176 pp.

[54] Zhukovskii V.I., Chikrii A.A., Linear quadratic differential games, Naukova dumka, Kiev, 1994, 320 pp.

[55] Zhukovskii V.I., Chikrii A.A., Soldatova N.G., “The Berge equilibrium in the conflicts under uncertainty”, Proc. XII All-Russian conf. on control problems (RCCP-2014), Inst. of Control Problems, M., 2014, 8290–8302 (In Russian) | MR

[56] Zhukovskii V.I., Gorbatov A.S., “Connection between the golden rule and Berge equilibrium”, Control Theory and Theory of Generalized Solutions of Hamilton–Jacobi Equations, CGS'2015, Abstracts of II International Seminar dedicated to the 70th Anniversary of Academician A.I. Subbotin (Yekaterinburg, 2015), 58–60 (In Russian) [Жуковский В.И., Горбатов А.С., “Связь золотого правила с равновесием по Бержу”, Теория управления и теория обобщенных решений уравнений Гамильтона–Якоби, Тезисы докладов II Международного семинара, посвященного 70-летию со дня рождения академика А.И. Субботина, ИММ УрО РАН, УрФУ, Екатеринбург, 2015]

[57] Zhukovskii V.I., Kudryavtsev K.N., “Mathematical foundations of the Golden Rule. I. Static variant”, Mat. Teor. Igr Pril., 7:3 (2015), 16–47 (In Russian) | MR | Zbl

[58] Zhukovskiy V.I., Kudryavtsev K.N., “Pareto-optimal Nash equilibrium: sufficient conditions and existence in mixed strategies”, Automation and Remote Control, 77:8 (2016), 1500–1510 ; Zhukovskii V.I., Kudryavtsev K.N., “Pareto-ravnovesnaya situatsiya: dostatochnye usloviya i suschestvovanie v smeshannykh strategiyakh”, Matematicheskaya teoriya igr i ee prilozheniya, 7:1 (2015), 74–91 | DOI | MR | MR | Zbl

[59] Zhukovskiy V.I., Kudryavtsev K.N., “Equilibrating conflicts under uncertainty. I. Analogue of a saddle-point”, Mat. Teor. Igr Pril., 5:1 (2013), 27–44 (In Russian) | Zbl

[60] Zhukovskii V.I., Kudryavtsev K.N., “Equilibrating conflicts under uncertainty. II. Analogue of a maximin”, Mat. Teor. Igr Pril., 5:2 (2013), 3–45 (In Russian) | Zbl

[61] Zhukovskii V.I., Kudryavtsev K.N., Gorbatov A.S., “The Berge equilibrium in Cournot's model of oligopoly”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:2 (2015), 147–156 (In Russian) | DOI | Zbl

[62] Zhukovskiy V.I., Sachkov S.N., “An unusual way of solving conflicts”, Contemporary technology of management–2014 (Moscow, 2014), 337–354 (In Russian)

[63] Zhukovskii V.I., Sachkov S.N., “Bilanciamento conflitti friendly”, Italian Science Review, 2014, no. 9 (18), 169–179 (in Italian) http://www.ias-journal.org/archive/2014/september/Zhukovsky.pdf

[64] Zhukovskiy V.I., Sachkov S.N., Smirnova L.V., “Existence of Berge equilibrium in mixed strategies”, Uchenye Zapiski Tavricheskogo Natsional'nogo Universiteta im. V.I. Vernadskogo, 27(66):1 (2014), 261–279

[65] Zhukovsky V.I., Sachkov S.N., Smirnova L.V., “Berge equilibrium”, Analysis, modeling, management, development of economic systems, Proceedings of VIII international school-symposium AMUR-2014 (Crimean Federal University, Simferopol, 2014), 124–133

[66] Zhukovskii V.I., Salukvadze M.E., The vector-valued maximin, Academic Press, N.Y., 1994, 407 pp. | MR

[67] Zhukovskii V.I., Smirnova L.V., “The existence of Berge equilibrium in differential game with “separated” dynamics”, Tavricheskii Vestnik Informatiki i Matematiki, 2015, no. 2 (27), 77–81 (In Russian)

[68] Zhukovskii V.I., Smirnova L.V., Gorbatov A.S., “Mathematical foundations of the Golden Rule. II. Dynamic variant”, Mat. Teor. Igr Pril., 8:1 (2016), 27–62 (In Russian) | MR | Zbl

[69] Zhukovskiy V.I., Topchishvili A.L., “The explicit form of Berge strongly guaranteed equilibrium in linear-quadratic non-cooperative games”, International Journal of Operations and Quantitative Management 2015, 21:4, 265–273

[70] Zhukovskiy V.I., Topchishvili A.L., “Mathematical model of golden rule in the form of differential positional game of many persons”, International Journal of Operations and Quantitative Management, 22:3 (2016), 203–229

[71] Zhukovskiy V., Topchishvili A., Sachkov S., “Application of probability measures to the existence problem of Berge–Vaisman guaranteed equilibrium”, Model Assisted Statistics and Applications, 9:3 (2014), 223–239 | DOI

[72] Zhukovskiy V.I., Vaisman K.S., “To problems about Berge equilibrium”, Vestnik Pskovskogo vol'nogo universiteta. Ser. Matematika i Informatika, 1997, no. 1, 49–70

[73] Zhukovskiy V.I., Zhiteneva Yu.M., “Bertrand difference-differential game model in the framework of Berge equilibrium”, Analysis, modeling, management, development of socio-economic systems, Proceedings of IX international school-symposium AMUR-2015 (Crimean Federal University, Simferopol, 2015), 109–115 (In Russian)

[74] Zolotarev V.V., Hybrid equilibrium in games involving uncertainty, Abstract of Cand. Sci. (Phys.-Math.) Dissertation, M., 2002, 25 pp. (In Russian)