Superextension as bitopological space
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 49 (2017), pp. 55-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Supercompact space of maximal linked systems of topological space (superextension) and its subspace consisting of ultrafilters of the family of closed sets are considered. Some relations connecting above-mentioned spaces and some corollaries relating to Wallman extension in the case of $T_1$-space are obtained. For this case, some representations of sets in the space of generalized elements (defined as closed ultrafilters) for an abstract attainability problem under constraints of asymptotic character are considered. A more general variant of the above-mentioned relations for arbitrary initial topological space is also investigated (construction that uses closed ultrafilters of initial topological space is considered). Along with equipment with topology of Wallman type, topology similar to one applied for Stone compactum is used. As a result, bitopological space of maximal linked systems and corresponding bitopological space of closed ultrafilters as its subspace are realized.
Keywords: bitopological space, closed ultrafilter, supercompactness, superextension.
@article{IIMI_2017_49_a2,
     author = {A. G. Chentsov},
     title = {Superextension as bitopological space},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {55--79},
     publisher = {mathdoc},
     volume = {49},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2017_49_a2/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Superextension as bitopological space
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2017
SP  - 55
EP  - 79
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2017_49_a2/
LA  - ru
ID  - IIMI_2017_49_a2
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Superextension as bitopological space
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2017
%P 55-79
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2017_49_a2/
%G ru
%F IIMI_2017_49_a2
A. G. Chentsov. Superextension as bitopological space. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 49 (2017), pp. 55-79. http://geodesic.mathdoc.fr/item/IIMI_2017_49_a2/

[1] de Groot J., “Supercompactness and superextensions”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90

[2] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977, 238 pp. | MR | Zbl

[3] Fedorchuk V.V., Filippov V.V., General topology. Base constructions, Fizmatlit, M., 2006, 336 pp.

[4] Chentsov A.G., “Certain constructions of asymptotic analysis related to the Stone–Čcech compactification”, Journal of Mathematical Sciences, 140:6 (2007), 873–904 | DOI | MR | Zbl

[5] Chentsov A.G., “Tier mappings and ultrafilter-based transformations”, Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 18, no. 4, 2012, 298–314 (in Russian)

[6] Chentsov A.G., “On one example of representing the ultrafilter space for an algebra of sets”, Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 4, 2011, 293–311 (in Russian)

[7] Chentsov A.G., “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 113–142 | DOI

[8] Chentsov A.G., Pytkeev E.G., “Some topological structures of extensions of abstract reachability problems”, Proceedings of the Steklov Institute of Mathematics, 292, suppl. 1 (2016), 36–54 | DOI | MR

[9] Kuratovskii K., Mostovskii A., Set theory, Mir, M., 1970, 416 pp.

[10] Aleksandrov P.S., Introduction to set theory and general topology, Editorial URSS, M., 2004, 368 pp.

[11] Bourbaki N., Topologie générale, Hermann, Paris, 1961, 263 pp. | MR

[12] Chentsov A.G., “Attraction sets in abstract attainability problems: equivalent representations and basic properties”, Russian Mathematics, 57:11 (2013), 28–44 | DOI | MR | Zbl

[13] Dvalishvili B.P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, Elsevier Science, Amsterdam, 2005, 422 pp. | MR | Zbl

[14] Engelking R., General topology, PWN, Warszawa, 1985, 752 pp. | MR

[15] Chentsov A.G., “To question about realization of attraction elements in abstract attainability problems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:2 (2015), 212–229 (in Russian) | DOI | Zbl

[16] Chentsov A.G., “To the validity of constraints in the class of generalized elements”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 3, 90–109 (in Russian) | DOI

[17] Chentsov A.G., “Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature”, Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 22, no. 1, 2016, 294–309 (in Russian)

[18] Gryzlov A.A., Bastrykov E.S., “Some centered systems of sets and points defined by them”, Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 4, 2011, 76–82 (in Russian)

[19] Gryzlov A.A., Golovastov R.A., “On the density and Suslin number of subsets of one Stone space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 18–24 (in Russian) | DOI