Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2016_48_2_a5, author = {D. A. Tursunov and U. Z. Erkebaev and E. A. Tursunov}, title = {Asymptotics of the {Dirichlet} problem solution for a ring with quadratic growths on the boundaries}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {73--81}, publisher = {mathdoc}, volume = {48}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a5/} }
TY - JOUR AU - D. A. Tursunov AU - U. Z. Erkebaev AU - E. A. Tursunov TI - Asymptotics of the Dirichlet problem solution for a ring with quadratic growths on the boundaries JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2016 SP - 73 EP - 81 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a5/ LA - ru ID - IIMI_2016_48_2_a5 ER -
%0 Journal Article %A D. A. Tursunov %A U. Z. Erkebaev %A E. A. Tursunov %T Asymptotics of the Dirichlet problem solution for a ring with quadratic growths on the boundaries %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2016 %P 73-81 %V 48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a5/ %G ru %F IIMI_2016_48_2_a5
D. A. Tursunov; U. Z. Erkebaev; E. A. Tursunov. Asymptotics of the Dirichlet problem solution for a ring with quadratic growths on the boundaries. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 73-81. http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a5/
[1] Il'in A. M., Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs, 102, Amer. Math. Soc., Providence R. I., 1992, 281 pp. | MR | Zbl
[2] Il'in A. M., Danilin A. R., Asymptotic methods in analysis, Fizmatlit, M., 2009, 248 pp.
[3] Alymkulov K., Khalmatov A. A., “A boundary function method for solving the model lighthill equation with a regular singular point”, Mathematical Notes, 92:5 (2012), 751–755 | DOI | DOI | MR | Zbl
[4] Alymkulov K., Asylbekov T. D., Dolbeeva S. F., “Generalization of the boundary function method for solving boundary-value problems for bisingularly perturbed second-order differential equations”, Mathematical Notes, 94:3 (2013), 451–454 | DOI | DOI | MR | Zbl
[5] Tursunov D. A., “Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 1(21), 34–40 (in Russian)
[6] Tursunov D. A., “Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 22, no. 1, 2016, 271–281 (in Russian)
[7] Tursunov D. A., “Asymptotic solutions of the bisingular perturbed elliptic equation. Case of a singular point on the boundary”, Izv. Tomsk. Politekh. Univ., 324:2 (2014), 31–35 (in Russian)
[8] Tursunov D. A., Erkebaev U. Z., “Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:4 (2015), 517–525 (in Russian) | Zbl
[9] Tursunov D. A., Erkebaev U. Z., “Asymptotic expansions of solutions to Dirichlet problem for elliptic equation with singularities”, Ufa Mathematical Journal, 8:1 (2016), 97–107 | DOI | MR
[10] Tursunov D. A., “Asymptotic expansions of the solution of the Dirichlet problem for a ring with a singularity on the boundary”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 1(39), 42–52 (in Russian)
[11] Tursunov D. A., Erkebaev U. Z., “Asymptotics of the solution to the bisingular perturbed Dirichlet problem in the ring with quadratic growth on the boundary”, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mat. Mekh. Fiz., 8:2 (2016), 52–61 (in Russian) | Zbl
[12] Gilbarg D., Trudinger N., Ellipticheskie differentsial'nye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 336 pp. (in Russian) | MR