On group pursuit of several evaders
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 68-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of simple group pursuit of several evaders on plane. The purpose of the pursuers is to catch all evaders. The purpose of the evaders is escape from meeting at least for one evader. All players have equal dynamical capabilities. Initial positions of pursuers are in the vertices of a convex polygon. We consider a positional game. We obtain sufficient conditions for capture of all evaders by pursuers.
Keywords: differential game, pursuer, evader, simple pursuit.
@article{IIMI_2016_48_2_a4,
     author = {A. A. Sokolov},
     title = {On group pursuit of several evaders},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {68--72},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a4/}
}
TY  - JOUR
AU  - A. A. Sokolov
TI  - On group pursuit of several evaders
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2016
SP  - 68
EP  - 72
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a4/
LA  - ru
ID  - IIMI_2016_48_2_a4
ER  - 
%0 Journal Article
%A A. A. Sokolov
%T On group pursuit of several evaders
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2016
%P 68-72
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a4/
%G ru
%F IIMI_2016_48_2_a4
A. A. Sokolov. On group pursuit of several evaders. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 68-72. http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a4/

[1] Chikrii A., Conflict-controlled processes, Springer, 1997, XX+404 pp. | DOI | MR

[2] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, M., 1990, 197 pp.

[3] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp.

[4] Petrov N. N., Petrov N. Nikandr., “On the differential game «Casacks-robbers»”, Differ. Uravn., 19:8 (1983), 1366–1374 | MR | Zbl

[5] Vagin D. A., Petrov N. N., “A problem of the pursuit of a group of rigidly connected evaders”, Journal of Computer and Systems Sciences International, 40:5 (2001), 749–753 | MR | Zbl

[6] Grigorenko N. L., “Pursuit of two evaders by several controlled objects”, Sov. Math., Dokl., 31 (1985), 550–553 | Zbl

[7] Vinogradova M. N., “On the capture of two escapees in the non-stationary problem of simple pursuit”, Mat. Teor. Igr Prilozh., 4:1 (2012), 21–31 (in Russian)

[8] Satimov N., Mamatov M. Sh., “On problems of pursuit and evasion away from meeting in differential games between groups of pursuers and evaders”, Dokl. Akad. Nauk UzSSR, 1983, no. 4, 3–6 (in Russian)

[9] Petrov N. N., Solov'eva N. A., “Problem of pursuit of a group of coordinated evaders in linear recurrent differential games”, Journal of Computer and Systems Sciences International, 51:6 (2012), 770–778 | DOI | MR | Zbl

[10] Pshenichnyi B. N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485