Implementation of the programmed iterations method in packages of spaces
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 42-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of retention studied here might be regarded (in the case of a bounded control interval) as a version of the approach problem within given constraints in the phase space and the target set given by the hyperplane of the space positions corresponding to the terminal moment of the process (the retention problem on the infinite horizon also fits to the problem statement in this paper). The essential difference of the paper from the previously considered formulations is the variability of the spaces of the system trajectories and the disturbance realizations depending on the initial moment. It is shown that the unsolvability set of the retention problem is the least element of the convexity constructed on the basis of the programmed absorption operator; under some additional consistency conditions (on the space of system trajectories and on the space of admissible disturbances corresponding to different time moments) the set of successful solvability of the retention problem is constructed as the limit of the iterative procedure in the space of sets, the elements of which are positions of the game, and the structure of resolving quasi-strategies is provided.
Keywords: programmed iterations, operator convexity, quasi-strategies, packages of spaces.
@article{IIMI_2016_48_2_a3,
     author = {D. A. Serkov and A. G. Chentsov},
     title = {Implementation of the programmed iterations method in packages of spaces},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {42--67},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a3/}
}
TY  - JOUR
AU  - D. A. Serkov
AU  - A. G. Chentsov
TI  - Implementation of the programmed iterations method in packages of spaces
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2016
SP  - 42
EP  - 67
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a3/
LA  - ru
ID  - IIMI_2016_48_2_a3
ER  - 
%0 Journal Article
%A D. A. Serkov
%A A. G. Chentsov
%T Implementation of the programmed iterations method in packages of spaces
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2016
%P 42-67
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a3/
%G ru
%F IIMI_2016_48_2_a3
D. A. Serkov; A. G. Chentsov. Implementation of the programmed iterations method in packages of spaces. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 42-67. http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a3/

[1] Krasovskii N. N., Subbotin A. I., “An alternative for the game problem of convergence”, J. Appl. Math. Mech., 34:6 (1970), 948–965 | DOI | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988, xi+517 pp. | MR | Zbl

[3] Kryazhimskii A. V., “On the theory of positional differential games of approach-evasion”, Dokl. Akad. Nauk SSSR, 239:4 (1978), 779–782 (in Russian) | Zbl

[4] Chentsov A. G., “On the structure of a game problem of convergence”, Sov. Math. Dokl., 16:5 (1975), 1404–1408 | Zbl

[5] Chentsov A. G., “On a game problem of guidance”, Sov. Math., Dokl., 17 (1976), 73–77 | Zbl

[6] Ukhobotov V. I., “Construction of a stable bridge for a class of linear games”, J. Appl. Math. Mech., 41:2 (1977), 350–354 | DOI | MR

[7] Chistyakov S. V., “On solving pursuit game problems”, J. Appl. Math. Mech., 41:5 (1977), 845–852 | DOI | MR

[8] Ukhobotov V. I., “On the construction of a stable bridge in a retention game”, J. Appl. Math. Mech., 45:2 (1981), 169–172 | DOI | MR | Zbl

[9] Ukhobotov V. I., “Iterations method in differential games of retention”, International Congress of Mathematicians, Short communications (Abstract) (Warszawa, 1983), v. XII, 7

[10] Dyatlov V. P., Chentsov A. G., “Monotone iterations of sets and their applications to control games”, Cybernetics, 23:2 (1987), 259–268 | DOI | Zbl

[11] Chentsov A. G., “An abstract confinement problem: a programmed iterations method of solution”, Automation and Remote Control, 65:2 (2004), 299–310 | DOI | MR | Zbl

[12] Krasovskii N. N., Game problems on the encounter of motions, Nauka, M., 1970, 420 pp.

[13] Soltan V. P., Introduction to axiomatic theory of convexity, Shtiintsa, Chisinau, 1984, 224 pp.

[14] Chentsov A. G., On the problem of control with a limited number of switching, Deposited in VINITI, no. 4942-V 87, Ural Polytechnic Institute, Sverdlovsk, 1987, 45 pp. (in Russian)

[15] Serkov D. A., Chentsov A. G., “Programmed iteration method and operator convexity in an abstract retention problem”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:3 (2015), 348–366 (in Russian) | DOI | Zbl

[16] Chentsov A. G., Serkov D. A., “Programmed iteration method in packages of spaces”, Doklady Mathematics, 94:2 (2016), 583–586 | DOI | DOI

[17] Kuratowski K., Mostowski A., Set theory, North-Holland, Amsterdam, 1967, 417 pp. | MR

[18] Engelking R., General topology, PWN, Warszawa, 1985, 752 pp. | MR

[19] Burbaki N., General topology. The main structures, Nauka, M., 1968, 275 pp.

[20] Aleksandrov P. S., Introduction to the theory of sets and general topology, Editorial URSS, M., 2004, 367 pp.

[21] Chentsov A. G., Morina S. I., Extensions and relaxations, Springer Netherlands, 2002, xiv+408 pp. | DOI | MR

[22] Ivanov V. M., Chentsov A. G., “On the control of discrete systems on an infinite time interval”, USSR Computational Mathematics and Mathematical Physics, 27:6 (1987), 116–121 | DOI | Zbl