On the spectrum of a periodic magnetic Dirac operator
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the periodic three-dimensional Dirac operator $\widehat {\mathcal D} +\widehat W=\sum \widehat \alpha _j(-i\frac {\partial }{\partial x_j}-A_j)+\widehat V_0+ \widehat V_1$. The vector potential $A\colon {\mathbb R}^3\to {\mathbb R}^3$ and the functions $\widehat V_s$, $s=0,1$, with values in the space of Hermitian $(4\times 4)$-matrices are periodic with a common period lattice $\Lambda \subset {\mathbb R}^3$. The functions $\widehat V_s$ are supposed to satisfy the commutation relations $\widehat V_s\widehat \alpha _j=(-1)^s\widehat \alpha _j\widehat V_s$, $j=1,2,3$, $s=0,1$. Let $K$ be the fundamental domain of the lattice $\Lambda $. We prove absolute continuity of the spectrum of the operator $\widehat {\mathcal D}+\widehat W$ provided that $A\in H^q_{\mathrm {loc}} ({\mathbb R}^3;{\mathbb R}^3)$, $q>1$, or $\sum \| A_N\| +\infty $ where $A_N$ are the Fourier coefficients of the magnetic potential $A$, and the function $\widehat V=\widehat V_0+ \widehat V_1$ belongs to the space $L^3_w(K)$ and satisfies the estimate ${\mathrm {mes}}\, \{ x\in K:\| \widehat V(x)\| >t\} \leqslant Ct^{-3}$ for all sufficiently large numbers $t>0$. The constant $C>0$ depends on the $A$ (if $A\equiv 0$ then $C$ is a universal constant), and $\mathrm {mes}$ is the Lebesgue measure. We can also add a function of the same form with several Coulomb singularities $|x-x_m|^{-1}\widehat w_m$ in neighborhoods of points $x_m\in K$, $m=1,\ldots ,m_0$, to the function $\widehat V=\widehat V_0+\widehat V_1$ provided that this function is continuous for $x\notin x_m+\Lambda $, $m=1,\ldots ,m_0$, and $\| \widehat w_m\| \leqslant C_1$ for all $m$. The constant $C_1>0$ also depends on the magnetic potential $A$ (and does not depend on the $m_0$).
Keywords: Dirac operator, absolute continuity of the spectrum, periodic potential.
@article{IIMI_2016_48_2_a0,
     author = {L. I. Danilov},
     title = {On the spectrum of a periodic magnetic {Dirac} operator},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a periodic magnetic Dirac operator
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2016
SP  - 3
EP  - 21
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/
LA  - ru
ID  - IIMI_2016_48_2_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a periodic magnetic Dirac operator
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2016
%P 3-21
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/
%G ru
%F IIMI_2016_48_2_a0
L. I. Danilov. On the spectrum of a periodic magnetic Dirac operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 3-21. http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/

[1] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York, 1975, 361 pp. | MR | Zbl

[2] Kato T., Perturbation theory for linear operators, Springer Verlag, Berlin, 1976 | DOI | MR | Zbl

[3] Danilov L. I., The spectrum of the Dirac operator with periodic potential. VI, Deposited in VINITI 31.12.1996, no.3855-V96, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1996, 45 pp. (in Russian)

[4] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993 | DOI | MR | Zbl

[5] Filonov N., Sobolev A. V., “Absence of singular continuous component in the spectrum of analytic direct integrals”, J. Math. Sci., 136 (2006), 3826–3831 | DOI | MR | Zbl

[6] Birman M. Sh., Suslina T. A., “Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity”, St. Petersburg Math. J., 11:2 (2000), 203–232 | MR

[7] Kuchment P., Levendorskii S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl

[8] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–413 | DOI | MR

[9] Danilov L. I., “Spectrum of the Dirac operator in ${\mathbb R}^n$ with periodic potential”, Theoret. and Math. Phys., 85:1 (1990), 1039–1048 | DOI | MR | Zbl

[10] Danilov L. I., “Resolvent estimates and the spectrum of the Dirac operator with periodic potential”, Theoret. and Math. Phys., 103:1 (1995), 349–365 | DOI | MR | Zbl

[11] Danilov L. I., “Absolute continuity of the spectrum of a periodic Dirac operator”, Differential Equations, 36:2 (2000), 262–271 | DOI | MR | Zbl

[12] Danilov L. I., “On the spectrum of a two-dimensional periodic Dirac operator”, Theoret. and Math. Phys., 118:1 (1999), 1–11 | DOI | DOI | MR

[13] Birman M. Sh., Suslina T. A., “The periodic Dirac operator is absolutely continuous”, Integr. Equat. Oper. Theory, 34 (1999), 377–395 | DOI | MR | Zbl

[14] Danilov L. I., “On the spectrum of the periodic Dirac operator”, Theoret. and Math. Phys., 124:1 (2000), 859–871 | DOI | DOI | MR | Zbl

[15] Danilov L. I., “Absence of eigenvalues for the generalized two-dimensional periodic Dirac operator”, St. Petersburg Math. J., 17:3 (2006), 409–433 | DOI | MR | Zbl

[16] Danilov L. I., “On absolute continuity of the spectrum of a three-dimensional periodic Dirac operator”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2006, no. 1(35), 49–76 (in Russian)

[17] Danilov L. I., “Absolute continuity of the spectrum of a multidimensional periodic magnetic Dirac operator”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut Nauki, 2008, no. 1, 61–96 (in Russian)

[18] Shen Z., Zhao P., “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Trans. Amer. Math. Soc., 360:4 (2008), 1741–1758 | DOI | MR | Zbl

[19] Danilov L. I., On absolute continuity of the spectrum of a d-dimensional periodic magnetic Dirac operator, 2008, arXiv: 0805.0399 [math-ph] | MR

[20] Danilov L. I., “On absolute continuity of the spectrum of a 3D periodic magnetic Dirac operator”, Integr. Equat. Oper. Theory, 71 (2011), 535–556 | DOI | MR | Zbl

[21] Danilov L. I., On absolute continuity of the spectrum of periodic Schrödinger and Dirac operators. I, Deposited in VINITI 15.06.2000, no. 1683-V00, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 2000, 76 pp. (in Russian)

[22] Richtmyer R. D., Principles of advanced mathematical physics, v. I, Springer Verlag, New York–Heidelberg–Berlin, 1978 | MR | Zbl

[23] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl

[24] Gel'fand I. M., “Expansion in characteristic functions of an equation with periodic coefficients”, Dokl. Akad. Nauk SSSR, 73:6 (1950), 1117–1120 (in Russian) | Zbl

[25] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR