Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2016_48_2_a0, author = {L. I. Danilov}, title = {On the spectrum of a periodic magnetic {Dirac} operator}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--21}, publisher = {mathdoc}, volume = {48}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/} }
TY - JOUR AU - L. I. Danilov TI - On the spectrum of a periodic magnetic Dirac operator JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2016 SP - 3 EP - 21 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/ LA - ru ID - IIMI_2016_48_2_a0 ER -
%0 Journal Article %A L. I. Danilov %T On the spectrum of a periodic magnetic Dirac operator %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2016 %P 3-21 %V 48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/ %G ru %F IIMI_2016_48_2_a0
L. I. Danilov. On the spectrum of a periodic magnetic Dirac operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 3-21. http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/
[1] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York, 1975, 361 pp. | MR | Zbl
[2] Kato T., Perturbation theory for linear operators, Springer Verlag, Berlin, 1976 | DOI | MR | Zbl
[3] Danilov L. I., The spectrum of the Dirac operator with periodic potential. VI, Deposited in VINITI 31.12.1996, no.3855-V96, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 1996, 45 pp. (in Russian)
[4] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993 | DOI | MR | Zbl
[5] Filonov N., Sobolev A. V., “Absence of singular continuous component in the spectrum of analytic direct integrals”, J. Math. Sci., 136 (2006), 3826–3831 | DOI | MR | Zbl
[6] Birman M. Sh., Suslina T. A., “Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity”, St. Petersburg Math. J., 11:2 (2000), 203–232 | MR
[7] Kuchment P., Levendorskii S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl
[8] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–413 | DOI | MR
[9] Danilov L. I., “Spectrum of the Dirac operator in ${\mathbb R}^n$ with periodic potential”, Theoret. and Math. Phys., 85:1 (1990), 1039–1048 | DOI | MR | Zbl
[10] Danilov L. I., “Resolvent estimates and the spectrum of the Dirac operator with periodic potential”, Theoret. and Math. Phys., 103:1 (1995), 349–365 | DOI | MR | Zbl
[11] Danilov L. I., “Absolute continuity of the spectrum of a periodic Dirac operator”, Differential Equations, 36:2 (2000), 262–271 | DOI | MR | Zbl
[12] Danilov L. I., “On the spectrum of a two-dimensional periodic Dirac operator”, Theoret. and Math. Phys., 118:1 (1999), 1–11 | DOI | DOI | MR
[13] Birman M. Sh., Suslina T. A., “The periodic Dirac operator is absolutely continuous”, Integr. Equat. Oper. Theory, 34 (1999), 377–395 | DOI | MR | Zbl
[14] Danilov L. I., “On the spectrum of the periodic Dirac operator”, Theoret. and Math. Phys., 124:1 (2000), 859–871 | DOI | DOI | MR | Zbl
[15] Danilov L. I., “Absence of eigenvalues for the generalized two-dimensional periodic Dirac operator”, St. Petersburg Math. J., 17:3 (2006), 409–433 | DOI | MR | Zbl
[16] Danilov L. I., “On absolute continuity of the spectrum of a three-dimensional periodic Dirac operator”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2006, no. 1(35), 49–76 (in Russian)
[17] Danilov L. I., “Absolute continuity of the spectrum of a multidimensional periodic magnetic Dirac operator”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut Nauki, 2008, no. 1, 61–96 (in Russian)
[18] Shen Z., Zhao P., “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Trans. Amer. Math. Soc., 360:4 (2008), 1741–1758 | DOI | MR | Zbl
[19] Danilov L. I., On absolute continuity of the spectrum of a d-dimensional periodic magnetic Dirac operator, 2008, arXiv: 0805.0399 [math-ph] | MR
[20] Danilov L. I., “On absolute continuity of the spectrum of a 3D periodic magnetic Dirac operator”, Integr. Equat. Oper. Theory, 71 (2011), 535–556 | DOI | MR | Zbl
[21] Danilov L. I., On absolute continuity of the spectrum of periodic Schrödinger and Dirac operators. I, Deposited in VINITI 15.06.2000, no. 1683-V00, Physical-Technical Institute of Ural Branch of the Russian Academy of Sciences, Izhevsk, 2000, 76 pp. (in Russian)
[22] Richtmyer R. D., Principles of advanced mathematical physics, v. I, Springer Verlag, New York–Heidelberg–Berlin, 1978 | MR | Zbl
[23] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl
[24] Gel'fand I. M., “Expansion in characteristic functions of an equation with periodic coefficients”, Dokl. Akad. Nauk SSSR, 73:6 (1950), 1117–1120 (in Russian) | Zbl
[25] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR