On the spectrum of a periodic magnetic Dirac operator
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the periodic three-dimensional Dirac operator $\widehat {\mathcal D} +\widehat W=\sum \widehat \alpha _j(-i\frac {\partial }{\partial x_j}-A_j)+\widehat V_0+ \widehat V_1$. The vector potential $A\colon {\mathbb R}^3\to {\mathbb R}^3$ and the functions $\widehat V_s$, $s=0,1$, with values in the space of Hermitian $(4\times 4)$-matrices are periodic with a common period lattice $\Lambda \subset {\mathbb R}^3$. The functions $\widehat V_s$ are supposed to satisfy the commutation relations $\widehat V_s\widehat \alpha _j=(-1)^s\widehat \alpha _j\widehat V_s$, $j=1,2,3$, $s=0,1$. Let $K$ be the fundamental domain of the lattice $\Lambda $. We prove absolute continuity of the spectrum of the operator $\widehat {\mathcal D}+\widehat W$ provided that $A\in H^q_{\mathrm {loc}} ({\mathbb R}^3;{\mathbb R}^3)$, $q>1$, or $\sum \| A_N\| +\infty $ where $A_N$ are the Fourier coefficients of the magnetic potential $A$, and the function $\widehat V=\widehat V_0+ \widehat V_1$ belongs to the space $L^3_w(K)$ and satisfies the estimate ${\mathrm {mes}}\, \{ x\in K:\| \widehat V(x)\| >t\} \leqslant Ct^{-3}$ for all sufficiently large numbers $t>0$. The constant $C>0$ depends on the $A$ (if $A\equiv 0$ then $C$ is a universal constant), and $\mathrm {mes}$ is the Lebesgue measure. We can also add a function of the same form with several Coulomb singularities $|x-x_m|^{-1}\widehat w_m$ in neighborhoods of points $x_m\in K$, $m=1,\ldots ,m_0$, to the function $\widehat V=\widehat V_0+\widehat V_1$ provided that this function is continuous for $x\notin x_m+\Lambda $, $m=1,\ldots ,m_0$, and $\| \widehat w_m\| \leqslant C_1$ for all $m$. The constant $C_1>0$ also depends on the magnetic potential $A$ (and does not depend on the $m_0$).
Keywords: Dirac operator, absolute continuity of the spectrum, periodic potential.
@article{IIMI_2016_48_2_a0,
     author = {L. I. Danilov},
     title = {On the spectrum of a periodic magnetic {Dirac} operator},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a periodic magnetic Dirac operator
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2016
SP  - 3
EP  - 21
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/
LA  - ru
ID  - IIMI_2016_48_2_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a periodic magnetic Dirac operator
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2016
%P 3-21
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/
%G ru
%F IIMI_2016_48_2_a0
L. I. Danilov. On the spectrum of a periodic magnetic Dirac operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 48 (2016) no. 2, pp. 3-21. http://geodesic.mathdoc.fr/item/IIMI_2016_48_2_a0/