On a mixed type fourth-order differential equation
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 47 (2016) no. 1, pp. 119-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider questions of solvability and constructing the solution to a nonlocal mixed boundary value problem for a homogeneous mixed type fourth-order differential equation. We use the spectral method based on separation of variables. A criterion for unique solvability of the problem is obtained. We also study questions of existence of solutions in the case where uniqueness of the solution does not hold.
Keywords: boundary value problem, mixed type differential equation, fourth-order equation, integral conditions, unique solvability.
@article{IIMI_2016_47_1_a4,
     author = {T. K. Yuldashev},
     title = {On a mixed type fourth-order differential equation},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {119--128},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a4/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - On a mixed type fourth-order differential equation
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2016
SP  - 119
EP  - 128
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a4/
LA  - ru
ID  - IIMI_2016_47_1_a4
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T On a mixed type fourth-order differential equation
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2016
%P 119-128
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a4/
%G ru
%F IIMI_2016_47_1_a4
T. K. Yuldashev. On a mixed type fourth-order differential equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 47 (2016) no. 1, pp. 119-128. http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a4/

[1] Baev A. D., Shabrov S. A., Mon Meach, “Uniqueness of the solution of the mathematical model of forced string oscillation with singularities”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2014, no. 1, 50–55 (in Russian)

[2] Turbin M. V., “Investigation of initial boundary value problem for the Herschel–Bulkley mathematical fluid model”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2013, no. 2, 246–257 (in Russian)

[3] Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, Journal of Mathematical Physics, 43 (1964), 309–313 | DOI | MR | Zbl

[4] Akhtyamov A. M., Ayupova A. R., “On the resolution of the problem on detection of defects in the form of a small cavity in a rod”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 12:3 (2010), 37–42 (in Russian) | MR

[5] Shabrov S. A., “Estimates of the influence function for a fourth-order mathematical model”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2013, no. 1, 168–179 (in Russian)

[6] Whitham G. B., Linear and nonlinear waves, A Wiley-Interscience Publication, New York–London–Sydney–Toronto, 1974 | MR | Zbl

[7] Yuldashev T. K., “An inverse problem for linear Fredholm partial integro-differential equation of fourth order”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2015, no. 2, 180–189 (in Russian)

[8] Yuldashev T. K., “An inverse problem for a nonlinear Fredholm integro-differential equation of fourth order with degenerate kernel”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 19:4 (2015), 736–749 (in Russian) | DOI

[9] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matem. Mod., 12:1 (2000), 94–103 (in Russian) | MR | Zbl

[10] Pul'kina L. S., “A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russian Mathematics, 56:10 (2012), 26–37 | DOI | MR | Zbl

[11] Gel'fand I. M., “Some questions of analysis and differential equations”, Uspekhi Mat. Nauk, 14:3 (1959), 3–19 (in Russian)

[12] Frankl' F. I., Selected works in gas dynamics, Nauka, M., 1973, 711 pp.

[13] Uflyand Ya. S., “On a question of the distribution of fluctuations in the composite electrical lines”, Inzhenerno-Fizicheskii Zhurnal, 7:1 (1964), 89–92 (in Russian)

[14] Dzhuraev T. D., Sopuev A., Mamazhanov M., Boundary value problems for parabolic-hyperbolic type equations, Fan, Tashkent, 1986, 576 pp.

[15] Moiseev E. I., “Solvability of a nonlocal boundary value problem”, Differential Equations, 37:11 (2001), 1643–1646 | DOI | MR | Zbl

[16] Repin O. A., “An analog of the Nakhushev problem for the Bitsadze–Lykov equation”, Differential Equations, 38:10 (2002), 1503–1508 | DOI | MR | Zbl

[17] Sabitov K. B., On the theory of mixed type equations, Fizmatlit, M., 2014, 301 pp.

[18] Sabitova Yu. K., “Boundary-value problem with nonlocal integral condition for mixed-type equations with degeneracy on the transition line”, Math. Notes, 98:3 (2015), 454–465 | DOI | DOI | MR | Zbl

[19] Salakhitdinov M. S., Urinov A. K., Boundary value problems for the mixed type equations with spectral parameter, Fan, Tashkent, 1997, 165 pp.

[20] Yuldashev T. K., “On the solvability of mixed value problem for linear parabolic-hyperbolic Fredholm integro-differential equation”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 15:3 (2013), 158–163 (in Russian) | Zbl