Characteristics of invariancy for the attainability set of a control system
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 47 (2016) no. 1, pp. 44-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study characteristics associated with invariancy or weak invariancy of a given set $\mathfrak M\doteq\bigl\{(t,x)\in [0,+\infty)\times\mathbb R^n: x\in M(t)\bigr\}$ with respect to a control system $\dot x=f(t,x,u)$ on a finite time interval. One of such characteristics is relative frequency ${\rm freq}_{[\tau,\tau+\vartheta]}(D,M)$ of containing the attainability set $D(t,X)$ of this system in the set $\mathfrak M$ on a segment $[\tau,\tau+\vartheta]$. This characteristic is equal to the quotient of the Lebegues measure of those $t$ from $[\tau,\tau+\vartheta]$ at which $D(t,X)\subseteq M(t)$ to the length of the given segment. Other characteristic, ${\rm freq}_{\vartheta}(D,M)\doteq\inf\limits_{\tau\geqslant\,0}\, {\rm freq}_{[\tau,\tau+\vartheta]}(D,M)$ displays uniformity of containing the attainability set $D(t,X)$ in the set $\mathfrak M$ on a segment of the fixed length $\vartheta$. We prove theorems about estimation and calculation of these characteristics for various multivalued functions $M(t)$ and $D(t,X)$. In particular, we receive equalities for ${\rm freq}_{T}(D, M)$ if the function $M(t)$ is periodic with a period $T$ and the function $D(t, X)$ satisfies the inclusion $D(t+T,X)\subseteq D(t,X)$ for all $t\geqslant 0$. We consider examples of calculation and estimations of these characteristics.
Keywords: control systems, differential inclusions, attainability set.
@article{IIMI_2016_47_1_a2,
     author = {L. I. Rodina and A. H. Hammady},
     title = {Characteristics of invariancy for the attainability set of a control system},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {44--53},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a2/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - A. H. Hammady
TI  - Characteristics of invariancy for the attainability set of a control system
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2016
SP  - 44
EP  - 53
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a2/
LA  - ru
ID  - IIMI_2016_47_1_a2
ER  - 
%0 Journal Article
%A L. I. Rodina
%A A. H. Hammady
%T Characteristics of invariancy for the attainability set of a control system
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2016
%P 44-53
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a2/
%G ru
%F IIMI_2016_47_1_a2
L. I. Rodina; A. H. Hammady. Characteristics of invariancy for the attainability set of a control system. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 47 (2016) no. 1, pp. 44-53. http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a2/

[1] Hartman Ph., Ordinary differential equations, John Wiley and Sons, New York–London–Sydney, 1964 | MR | Zbl

[2] Aubin J.-P., Viability theory, Birkhauser, Boston–Basel–Berlin, 1991, 543 pp. | MR | Zbl

[3] Panasenko E. A., Tonkov E. L., “Lyapunov functions and the positive invariant sets of differential inclusions”, Differ. Uravn., 43:6 (2007), 859–860 (in Russian)

[4] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262, no. 1, 2008, 194–212 | DOI | MR | Zbl

[5] Ushakov V. N., Malev A. G., “On the question of the stability defect of sets in an approach game problem”, Proceedings of the Steklov Institute of Mathematics, 272, no. 1, 2011, 229–254 | DOI | Zbl

[6] Ushakov V. N., Zimovets A. A., “Invariance defect of sets with respect to differential inclusion”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2, 98–111 (in Russian) | MR

[7] Rodina L. I., Tonkov E. L., “Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center”, Nelin. Dinam., 5:2 (2009), 265–288 (in Russian) | MR

[8] Rodina L. I., “Estimation of statistical characteristics of attainability sets of controllable systems”, Russian Mathematics, 57:11 (2013), 17–27 | DOI | MR | Zbl

[9] Rodina L. I., “Invariant and statistically weakly invariant sets of control systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 2(40), 3–164 (in Russian)

[10] Rodina L. I., Hammady A. H., “The characteristics of attainability set connected with invariancy of control systems on the finite time interval”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, 35–48 (in Russian) | MR

[11] Rodina L. I., Hammady A. H., “Statistical characteristics of attainability set of controllable systems with random coefficients”, Russian Mathematics, 58:11 (2014), 43–53 | DOI | MR | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elements of functions theory and functional analysis, Nauka, M., 1976, 544 pp.

[13] Davydov A. A., Pastres R., Petrenko I. A., “Optimization of the spatial distribution of pollution emission in 1D flow”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 5, 2010, 30–35 (in Russian)

[14] Kuzenkov O. A., Ryabova E. A., Mathematical modeling of processes of selection, Nizhnii Novgorod State University, Nizhnii Novgorod, 2007, 324 pp.

[15] Riznichenko G. Yu., Lectures on mathematical models in biology, v. 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.

[16] Nedorezov L. V., Course of lectures on mathematical ecology, Sibirskii khronograf, Novosibirsk, 1997, 161 pp.