Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2016_47_1_a0, author = {A. K. Koshcheeva}, title = {New constants in pretabular superintuitionistic logics: {P.~Novikov's} approach}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--33}, publisher = {mathdoc}, volume = {47}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a0/} }
TY - JOUR AU - A. K. Koshcheeva TI - New constants in pretabular superintuitionistic logics: P.~Novikov's approach JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2016 SP - 3 EP - 33 VL - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a0/ LA - ru ID - IIMI_2016_47_1_a0 ER -
%0 Journal Article %A A. K. Koshcheeva %T New constants in pretabular superintuitionistic logics: P.~Novikov's approach %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2016 %P 3-33 %V 47 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a0/ %G ru %F IIMI_2016_47_1_a0
A. K. Koshcheeva. New constants in pretabular superintuitionistic logics: P.~Novikov's approach. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 47 (2016) no. 1, pp. 3-33. http://geodesic.mathdoc.fr/item/IIMI_2016_47_1_a0/
[1] Grigoliya R. Sh., “Free S4.3-algebra with a finite number of generators”, Studies in nonclassical logics and formal systems, Nauka, M., 1983, 281–287 (in Russian)
[2] Ershov Yu. L., Palyutin E. A., Mathematical logic, Nauka, M., 1987, 336 pp.
[3] Zakharyaschev M. V., “Syntax and semantics of intermediate logics”, Algebra and Logic, 28:4 (1989), 262–282 | MR | Zbl
[4] Kleene S. C., Introduction to metamathematics, D. Van Nostrand Company, New York, 1952 | MR
[5] Koshcheeva A. K., “Axiomatics of P. S. Novikov complete extensions of the superintuitionistic logic $L2$ in the language containing an additional constant”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 3, 28–39 (in Russian)
[6] Koshcheeva A. K., “A new constant in superintuitionistic logic $L3$”, Algebra and Logic, 54:1 (2015), 23–35 | DOI | MR | Zbl
[7] Koshcheeva A. K., New constants in pretabular superintuitionistic logics, Cand. Sci. (Phys.-Math.) Dissertation, Krasnoyarsk, 2015, 84 pp. (in Russian)
[8] Kuznetsov A. V., “Some properties of the structure of manifolds of pseudoboolean algebras”, Proceedings of XI All-Union Algebraic Colloquium (Chisinau, 1971), 255–256 (in Russian)
[9] Kuznetsov A. V., Gerchiu V. Ya., “Superintuitionistic logics and finite approximability”, Sov. Math., Dokl., 11 (1970), 1614–1619 | MR | MR | Zbl
[10] Lavrov I. A., Maksimova L. L., Tasks in set theory, mathematical logic and the theory of algorithms, Fizmatlit, M., 2004, 256 pp.
[11] Maksimova L. L., “Pretabular superintuitionistic logics”, Algebra and Logic, 11:5 (1972), 308–314 | DOI | MR | Zbl
[12] Maksimova L. L., Schreiner P. A., “Algorithms of the recognition of the tabularity and pretabularity in the extensions of the intuitionistic calculus”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:3 (2006), 49–58 (in Russian) | MR
[13] Novikov P. S., Constructive mathematical logic from the point of view classical logic, Nauka, M., 1977, 328 pp.
[14] Plisko V. E., Khakhanyan V. H., Intuitionistic logic, Moscow State University, M., 2009, 159 pp.
[15] Rasiowa H., Sikorski R., The mathematics of metamathematics, PWN, Warszawa, 1963 | MR
[16] Skvortsov D. P., “On intuitionistic propositional calculus with an additional logical connective”, Studies in nonclassical logics and formal systems, Nauka, M., 1983, 154–173 (in Russian)
[17] Smetanich Ya. S., “On the completeness of the propositional calculus with additional operations in one argiment”, Tr. Mosk. Mat. Obs., 9, 1960, 357–371 (in Russian) | MR | Zbl
[18] Smetanich Ya. S., “On statement calculi with an additional operation”, Soviet Math. Doklady, 2 (1961), 937–939 | MR | Zbl
[19] Chagrov A. V., “Undecidable properties of superintuitionistic logics”, Matematicheskie voprosy kibernetiki, 5, Fizmatlit, M., 1994, 62–108 (in Russian) | Zbl
[20] Esakia L. L., Heyting algebras, Metsniereba, Tbilisi, 1985, 104 pp.
[21] Yankov V. A., “Constructing a sequence of strongly independent superintuitionistic propositional calculi”, Soviet Math. Dokl., 9 (1968), 806–807 | MR | Zbl
[22] Yashin A. D., “A new regular constant in intuitionistic propositional logic”, Siberian Math. Journal, 37:6 (1996), 1242–1258 | DOI | MR | Zbl
[23] Yashin A. D., “On a new constant in intuitionistic propositional logic”, Fundam. Prikl. Mat., 5:3 (1999), 903–926 (in Russian) | MR | Zbl
[24] Yashin A. D., “Classification of Novikov complete logics with extra logical constants”, Algebra and Logic, 42:3 (2003), 207–216 | DOI | MR | Zbl
[25] Yashin A. D., “New constants in two pretabular superintuitionistic logics”, Algebra and Logic, 50:2 (2011), 171–186 | DOI | MR | Zbl
[26] Yashin A. D., Koshcheeva A. K., “New constants in the superintuitionistic logic $L2$”, Mathematical Notes, 94:5 (2013), 938–950 | DOI | DOI | MR | Zbl
[27] Bezhanishvili N., de Jongh D., Intuitionistic logic, http://www.illc.uva.nl/Research/Publications/Reports/PP-2006-25.text.pdf
[28] Chagrov A., Zakharyaschev M., Modal logic, Oxford University Press, Oxford, 1997, 605 pp. | MR | Zbl
[29] Dubashi D. P., “On decidable varieties of Heyting algebras”, J. Symb. Log., 57:3 (1992), 988–991 | DOI | MR
[30] Dummett M. A., “A propositional calculus with denumerable matrix”, J. Symb. Log., 24:2 (1959), 97–106 | DOI | MR | Zbl
[31] Dunn J. M., Meyer R. K., “Algebraic completeness results for Dummet's LC and its extensions”, Zeitschr. Math. Log. und Grundl. Math., 17 (1971), 225–230 | DOI | MR | Zbl
[32] Fitting M., Intuitionistic logic, model theory and forcing, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam–London, 1969, 191 pp. | MR | Zbl
[33] Gabbay D. M., “On some new intuitionistic propositional connectives, I”, Studia Logica, 36:1–2 (1977), 127–139 | DOI | MR | Zbl
[34] Goldblatt R. I., “Metamathematics of modal logics, I”, Rep. on Math. Logic, 6 (1976), 41–78 | MR
[35] Goldblatt R. I., “Metamathematics of modal logics, II”, Rep. on Math. Logic, 7 (1976), 21–52 | MR
[36] Hosoi T., “On intermediate logics, I”, J. Fac. Sci. Univ. Tokyo. Sec. 1, 1967, no. 14, 293–312 | MR
[37] Hosoi T., Ono H., “The intermediate logics of the second slice”, J. Fac. Sci. Univ. Tokyo. Sec. 1, 1970, no. 17, 457–461 | MR | Zbl
[38] Kirk R. E., “A characterization of the classes of finite tree frames which are adequate for the intuitionistic logic”, Zeitschr. Math. Log. und Grundl. Math., 26:6 (1980), 497–501 | DOI | MR | Zbl
[39] Kolmogoroff A., “Zur Deutung der intuitionistischen Logik”, Math. Z., 35:1 (1932), 58–65
[40] Ono H., “Kripke models and intermediate logics”, Publs. Res. Inst. Math. Sci. Kyoto Univ., 6:71 (1970), 461–476 | DOI | MR
[41] Yashin A. D., “New intuitionistic logical constants and Novikov completeness”, Studia Logica, 63:2 (1999), 151–180 | DOI | MR | Zbl
[42] Zakharyaschev M., Wolter F., Chagrov A., “Advanced modal logic”, Handbook of Philosophical Logic, v. 3, eds. Gabbay D. M., Guenthner F., Kluwer Acad. Publ., 2001, 83–266 | MR | Zbl