Stability and bifurcations of undulate solutions for one functional-differential equation
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 60-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic boundary-value problem for one nonlinear functional-differential equation is considered. This equation is well known as the nonlocal erosion equation. The case of small spatial deviation is studied. The possibility of the bifurcations for the spatial nonhomogeneous solutions is demonstrated. For these solutions, the asymptotical formulas are obtained and the stability is studied. All results are obtained with the help of the bifurcation theory.
Keywords: nonlocal model of erosion, normal forms, stability, asymptotic formulas.
Mots-clés : bifurcations
@article{IIMI_2015_46_2_a7,
     author = {A. M. Kovaleva and A. N. Kulikov and D. A. Kulikov},
     title = {Stability and bifurcations of undulate solutions for one functional-differential equation},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {60--68},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a7/}
}
TY  - JOUR
AU  - A. M. Kovaleva
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Stability and bifurcations of undulate solutions for one functional-differential equation
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 60
EP  - 68
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a7/
LA  - ru
ID  - IIMI_2015_46_2_a7
ER  - 
%0 Journal Article
%A A. M. Kovaleva
%A A. N. Kulikov
%A D. A. Kulikov
%T Stability and bifurcations of undulate solutions for one functional-differential equation
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 60-68
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a7/
%G ru
%F IIMI_2015_46_2_a7
A. M. Kovaleva; A. N. Kulikov; D. A. Kulikov. Stability and bifurcations of undulate solutions for one functional-differential equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 60-68. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a7/

[1] Rudy A. S., Bachurin V. I., “Spatially nonlocal model of surface erosion by ion bombardment”, Bulletin of the Russian Academy of Sciences: Physics, 72:5 (2008), 586–591 | DOI

[2] Rudyi A. S., Kulikov A. N., Kulikov D. A., Metlitskaya A. V., “High-mode wave relief in a spatially nonlocal erosion model”, Russian Microelectronics, 43:4 (2014), 277–283 | DOI | DOI

[3] Rudyi A. S., Kulikov A. N., Metlitskaya A. V., “Simulation of formation of nanostructures during sputtering of the surface by ion bombardment”, Russian Microelectronics, 40:2 (2011), 98–107 | DOI

[4] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6:4 (1988), 2390–2395 | DOI

[5] Sigmund P., “Theory of sputtering. I: Sputtering yield of amorphous and polycrystalline targets”, Phys. Rev., 184:2 (1969), 383–416 | DOI

[6] Sobolevskii P. E., “Equations of parabolic type in a Banach space”, Tr. Mosk. Mat. Obs., 10 (1961), 297–350 | MR | Zbl

[7] Krein S. G., Linear equations in Banach spaces, Birkhäuser, Boston, 1982, XII+106 pp. | MR | Zbl

[8] Marsden J. E., McCracken M., The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976, 408 pp. | MR | Zbl

[9] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York, 1983, 462 pp. | MR | Zbl

[10] Kulikov A. N., Kulikov D. A., “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 800–814 | DOI | MR | Zbl

[11] Kulikov D. A., “Heterogeneous dissipative structures in the problem of the formation of nano-relief”, Dinamicheskie sistemy, 2(30):3–4 (2012), 259–272 (in Russian)

[12] Kulikov D. A., “Spatially ingomogeneous dissipative structures in a periodic boundary-value problem for nonlocal erosion equation”, Journal of Mathematical Sciences, 205:6 (2015), 791–805 | DOI | MR | Zbl