Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2015_46_2_a7, author = {A. M. Kovaleva and A. N. Kulikov and D. A. Kulikov}, title = {Stability and bifurcations of undulate solutions for one functional-differential equation}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {60--68}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a7/} }
TY - JOUR AU - A. M. Kovaleva AU - A. N. Kulikov AU - D. A. Kulikov TI - Stability and bifurcations of undulate solutions for one functional-differential equation JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 60 EP - 68 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a7/ LA - ru ID - IIMI_2015_46_2_a7 ER -
%0 Journal Article %A A. M. Kovaleva %A A. N. Kulikov %A D. A. Kulikov %T Stability and bifurcations of undulate solutions for one functional-differential equation %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 60-68 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a7/ %G ru %F IIMI_2015_46_2_a7
A. M. Kovaleva; A. N. Kulikov; D. A. Kulikov. Stability and bifurcations of undulate solutions for one functional-differential equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 60-68. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a7/
[1] Rudy A. S., Bachurin V. I., “Spatially nonlocal model of surface erosion by ion bombardment”, Bulletin of the Russian Academy of Sciences: Physics, 72:5 (2008), 586–591 | DOI
[2] Rudyi A. S., Kulikov A. N., Kulikov D. A., Metlitskaya A. V., “High-mode wave relief in a spatially nonlocal erosion model”, Russian Microelectronics, 43:4 (2014), 277–283 | DOI | DOI
[3] Rudyi A. S., Kulikov A. N., Metlitskaya A. V., “Simulation of formation of nanostructures during sputtering of the surface by ion bombardment”, Russian Microelectronics, 40:2 (2011), 98–107 | DOI
[4] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6:4 (1988), 2390–2395 | DOI
[5] Sigmund P., “Theory of sputtering. I: Sputtering yield of amorphous and polycrystalline targets”, Phys. Rev., 184:2 (1969), 383–416 | DOI
[6] Sobolevskii P. E., “Equations of parabolic type in a Banach space”, Tr. Mosk. Mat. Obs., 10 (1961), 297–350 | MR | Zbl
[7] Krein S. G., Linear equations in Banach spaces, Birkhäuser, Boston, 1982, XII+106 pp. | MR | Zbl
[8] Marsden J. E., McCracken M., The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976, 408 pp. | MR | Zbl
[9] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York, 1983, 462 pp. | MR | Zbl
[10] Kulikov A. N., Kulikov D. A., “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 800–814 | DOI | MR | Zbl
[11] Kulikov D. A., “Heterogeneous dissipative structures in the problem of the formation of nano-relief”, Dinamicheskie sistemy, 2(30):3–4 (2012), 259–272 (in Russian)
[12] Kulikov D. A., “Spatially ingomogeneous dissipative structures in a periodic boundary-value problem for nonlocal erosion equation”, Journal of Mathematical Sciences, 205:6 (2015), 791–805 | DOI | MR | Zbl