Recurrent and almost automorphic selections of multivalued mappings
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 45-52

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(U,\rho )$ be a complete metric space and $({\mathrm {cl}}_{\, b}\, U,{\mathrm {dist}})$ be the metric space of nonempty closed bounded subsets of the space $U$ with the Hausdorff metric ${\mathrm {dist}}$. On the set $M({\mathbb R},U)$ of strongly measurable functions $f\colon{\mathbb R}\to U$ we introduce the metric $d^{(\rho )}$ such that the convergence in this metric is equivalent to the convergence in Lebesgue measure on every closed interval $[-l,l]$, $l>0$. The metric $d^{({\mathrm {dist}})}$ on the set $M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ of strongly measurable multivalued mappings $f\colon{\mathbb R}\to {\mathrm {cl}}_{\, b}\, U$ (which are considered as functions with the range in ${\mathrm {cl}}_{\, b}\, U$) is defined by analogy with the metric $d^{(\rho )}.$ The spaces $M({\mathbb R},U)$ and $M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ are the phase spaces of the dynamical systems of translations. For a multivalued Stepanov-like recurrent mapping $F\in {\mathcal R}({\mathbb R},{\mathrm {cl}}_{\, b}\, U)\subseteq M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ and for any $x_0\in U$ and any nondecreasing function $\eta \colon[0,+\infty )\to [0,+\infty )$ for which $\eta (0)=0$ and $\eta (\xi )>0$ for $\xi >0$, it is proved that there exists a homomorphism of dynamical systems ${\mathcal F}:\overline {{\mathrm {orb}}\, F}=\overline {\{ F(\cdot +t):t\in {\mathbb R}\} }\to M({\mathbb R},U)$ such that $({\mathcal F}F^{\, \prime })(t)\in F^{\, \prime }(t)$ and $\rho (({\mathcal F}F^{\, \prime })(t),x_0)\leqslant \rho (x_0,F^{\, \prime }(t))+\eta \bigl( \rho (x_0,F^{\, \prime }(t))\bigr) $ for all $F^{\, \prime }\in \overline {{\mathrm {orb}}\, F}$ and a.e. $t\in {\mathbb R}$. Furthermore, the functions ${\mathcal F}F^{\, \prime }$ are Stepanov-like recurrent. If the multivalued mapping $F$ is Stepanov-like almost automorphic, then the function ${\mathcal F}F$ is Stepanov-like almost automorphic as well.
Keywords: recurrent function, almost automorphic function, selector, multivalued mapping.
@article{IIMI_2015_46_2_a5,
     author = {L. I. Danilov},
     title = {Recurrent and almost automorphic selections of multivalued mappings},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a5/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Recurrent and almost automorphic selections of multivalued mappings
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 45
EP  - 52
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a5/
LA  - ru
ID  - IIMI_2015_46_2_a5
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Recurrent and almost automorphic selections of multivalued mappings
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 45-52
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a5/
%G ru
%F IIMI_2015_46_2_a5
L. I. Danilov. Recurrent and almost automorphic selections of multivalued mappings. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 45-52. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a5/