Recurrent and almost automorphic selections of multivalued mappings
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(U,\rho )$ be a complete metric space and $({\mathrm {cl}}_{\, b}\, U,{\mathrm {dist}})$ be the metric space of nonempty closed bounded subsets of the space $U$ with the Hausdorff metric ${\mathrm {dist}}$. On the set $M({\mathbb R},U)$ of strongly measurable functions $f\colon{\mathbb R}\to U$ we introduce the metric $d^{(\rho )}$ such that the convergence in this metric is equivalent to the convergence in Lebesgue measure on every closed interval $[-l,l]$, $l>0$. The metric $d^{({\mathrm {dist}})}$ on the set $M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ of strongly measurable multivalued mappings $f\colon{\mathbb R}\to {\mathrm {cl}}_{\, b}\, U$ (which are considered as functions with the range in ${\mathrm {cl}}_{\, b}\, U$) is defined by analogy with the metric $d^{(\rho )}.$ The spaces $M({\mathbb R},U)$ and $M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ are the phase spaces of the dynamical systems of translations. For a multivalued Stepanov-like recurrent mapping $F\in {\mathcal R}({\mathbb R},{\mathrm {cl}}_{\, b}\, U)\subseteq M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ and for any $x_0\in U$ and any nondecreasing function $\eta \colon[0,+\infty )\to [0,+\infty )$ for which $\eta (0)=0$ and $\eta (\xi )>0$ for $\xi >0$, it is proved that there exists a homomorphism of dynamical systems ${\mathcal F}:\overline {{\mathrm {orb}}\, F}=\overline {\{ F(\cdot +t):t\in {\mathbb R}\} }\to M({\mathbb R},U)$ such that $({\mathcal F}F^{\, \prime })(t)\in F^{\, \prime }(t)$ and $\rho (({\mathcal F}F^{\, \prime })(t),x_0)\leqslant \rho (x_0,F^{\, \prime }(t))+\eta \bigl( \rho (x_0,F^{\, \prime }(t))\bigr) $ for all $F^{\, \prime }\in \overline {{\mathrm {orb}}\, F}$ and a.e. $t\in {\mathbb R}$. Furthermore, the functions ${\mathcal F}F^{\, \prime }$ are Stepanov-like recurrent. If the multivalued mapping $F$ is Stepanov-like almost automorphic, then the function ${\mathcal F}F$ is Stepanov-like almost automorphic as well.
Keywords: recurrent function, almost automorphic function, selector, multivalued mapping.
@article{IIMI_2015_46_2_a5,
     author = {L. I. Danilov},
     title = {Recurrent and almost automorphic selections of multivalued mappings},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a5/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Recurrent and almost automorphic selections of multivalued mappings
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 45
EP  - 52
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a5/
LA  - ru
ID  - IIMI_2015_46_2_a5
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Recurrent and almost automorphic selections of multivalued mappings
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 45-52
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a5/
%G ru
%F IIMI_2015_46_2_a5
L. I. Danilov. Recurrent and almost automorphic selections of multivalued mappings. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 45-52. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a5/

[1] Nemytskii V. V., Stepanov V. V., Qualitative theory of differential equations, RCD, M.–Izhevsk, 2004, 456 pp.

[2] Danilov L. I., “Recurrent and almost recurrent multivalued maps and their selections”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 2, 19–51 (in Russian) | Zbl

[3] Danilov L. I., “Recurrent and almost recurrent multivalued maps and their selections, III”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 25–52 (in Russian) | MR | Zbl

[4] Krein M. G., Nudel'man A. A., The Markov moment problem and extremal problems. Ideas and problems of P. L. Chebyshev and A. A. Markov and their further development, Nauka, M., 1973, 551 pp. | MR

[5] Danilov L. I., “The uniform approximation of recurrent functions and almost recurrent functions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 36–54 (in Russian) | MR | Zbl

[6] N'Guérékata G. M., “Comments on almost automorphic and almost periodic functions in Banach spaces”, Far East Journal of Mathematical Sciences, 17:3 (2005), 337–344 | MR | Zbl

[7] Levitan B. M., Almost periodic functions, GITTL, M., 1953, 396 pp.

[8] Boles Basit R., “The relationship between almost periodic Levitan functions and almost automorphic functions”, Moscow Univ. Math. Bull., 26:3–4 (1973), 74–77 | MR | Zbl

[9] N'Guérékata G. M., Pankov A., “Stepanov-like almost automorphic functions and monotone evolution equations”, Nonlinear Analysis, 68 (2008), 2658–2667 | DOI | MR | Zbl