Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2015_46_2_a3, author = {A. V. Vasil'ev and V. B. Vasil'ev}, title = {Difference and discrete equations on the real axis and the semiaxis}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {29--37}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a3/} }
TY - JOUR AU - A. V. Vasil'ev AU - V. B. Vasil'ev TI - Difference and discrete equations on the real axis and the semiaxis JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 29 EP - 37 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a3/ LA - ru ID - IIMI_2015_46_2_a3 ER -
%0 Journal Article %A A. V. Vasil'ev %A V. B. Vasil'ev %T Difference and discrete equations on the real axis and the semiaxis %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 29-37 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a3/ %G ru %F IIMI_2015_46_2_a3
A. V. Vasil'ev; V. B. Vasil'ev. Difference and discrete equations on the real axis and the semiaxis. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 29-37. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a3/
[1] Gakhov F. D., Boundary value problems, Nauka, M., 1977, 640 pp.
[2] Muskhelishvili N. I., Singular integral equations, Nauka, M., 1968, 511 pp.
[3] Mikhlin S. G., Prößdorf S., Singular integral operators, Springer, Berlin–Heidelberg–New York, 1986, 528 pp. | MR | Zbl
[4] Simonenko I. B., Local method in theory of operators that are invariant under a shift and their envelopes, TsVVR, Rostov-on-Don, 2007, 120 pp.
[5] Gokhberg I. Ts., Krupnik N. Ya., Introduction to theory of one-dimensional singular integral equations, Shtiintsa, Chisinau, 1973, 426 pp.
[6] Eskin G. I., Boundary value problems for elliptic pseudodifferential equations, Translations of Mathematical Monographs, 52, AMS, 1981, 375 pp. | MR | Zbl
[7] Vasil'ev V. B., Fourier integral multipliers, pseudodifferential equations, wave factorization, and boundary value problems, Editorial URSS, M., 2010, 135 pp.
[8] Titchmarsh E., Introduction to the theory of Fourier integrals, The Clarendon press, Oxford, 1937, 390 pp. | Zbl
[9] Milne-Thomson L. M., The calculus of finite differences, Chelsea Publishing Company, New York, 1981, 558 pp. | MR | Zbl
[10] Jordan C., Calculus of finite differences, Chelsea Publishing Company, New York, 1965, 654 pp. | MR | Zbl
[11] Vasilyev V. B., “General boundary value problems for pseudo differential equations and related difference equations”, Advances in Difference Equations, 2013:289 (2013), 1–7 | DOI | MR
[12] Vasilyev V. B., “On some difference equations of first order”, Tatra Mt. Math. Publ., 54 (2013), 165–181 | MR | Zbl
[13] Vasilyev A. V., Vasilyev V. B., “Discrete singular operators and equations in a half-space”, Azerbaijan Journal of Mathematics, 3:1 (2013), 84–93 | MR | Zbl
[14] Vasilyev A. V., Vasilyev V. B., “Discrete singular integrals in a half-space”, Current Trends in Analysis and its Applications, Proceedings of the 9th ISAAC Congress (Krakow, Poland, 2013), 663–670 | Zbl
[15] Vasil'ev A. V., Vasil'ev V. B., “Periodic Riemann problem and discrete convolution equations”, Differential Equations, 51:5 (2015), 652–660 | DOI | DOI | Zbl
[16] Sobolev S. L., Introduction to the theory of cubature formulae, Nauka, M., 1974, 808 pp.
[17] Dudgeon D., Mersereau R., Multidimensional digital signal processing, Prentice Hall, Englewood Cliffs, New Jersey, 1984, 400 pp. | Zbl
[18] Kurbatov V. G., Linear differential-difference equations, Voronezh University Publ., Voronezh, 1990, 167 pp.
[19] Kamenskii G. A., Skubachevskii A. L., Linear boundary-value problems for differential-difference equations, MAI, M., 1992, 190 pp.
[20] Noble B., Methods based on the Wiener–Hopf technique for the solution of partial differential equations, Pergamon Press, London–New York–Paris–Los Angeles, 1958, 246 pp. | MR | Zbl