Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2015_46_2_a28, author = {A. S. Hendy}, title = {A linearized difference scheme for a class of fractional partial differential equations with delay}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {236--242}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a28/} }
TY - JOUR AU - A. S. Hendy TI - A linearized difference scheme for a class of fractional partial differential equations with delay JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 236 EP - 242 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a28/ LA - en ID - IIMI_2015_46_2_a28 ER -
%0 Journal Article %A A. S. Hendy %T A linearized difference scheme for a class of fractional partial differential equations with delay %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 236-242 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a28/ %G en %F IIMI_2015_46_2_a28
A. S. Hendy. A linearized difference scheme for a class of fractional partial differential equations with delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 236-242. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a28/
[1] Ferreira J., “Energy estimates for delay diffusion-reaction equations”, J. Comp. Math., 26:4 (2008), 536–553 | MR | Zbl
[2] Hao Z., Sun Z., Cao W., “A fourth order approximation of fractional derivatives with its applications”, J. Comp. Phys., 281 (2015), 787–805 | DOI | MR
[3] Karatay I., Kale N., Bayramoglu S., “A new difference scheme for time fractional heat equations based on Crank–Nicolson method”, Fract. Calc. Appl. Anal., 16:4 (2013), 893–910 | DOI | MR
[4] Khader M. M., El Danaf T. S., Hendy S. A., “A computational matrix method for solving systems of high order fractional differential equations”, Appl. Math. Model., 37 (2013), 4035–4050 | DOI | MR | Zbl
[5] Pimenov G. V., Hendy S. A., “Numerical studies for fractional functional differential equations with delay based on BDF-Type shifted Chebyshev polynomials”, Abstract and Applied Analysis, 2015 (2015), article ID 510875 | DOI | MR
[6] Zhang Y., “A finite difference method for fractional partial differential equation”, Appl. Math. Comp., 16:2 (2009), 524–529 | DOI | MR
[7] Zhang Z., Sun Z., “A linearized compact difference scheme for a class of nonlinear delay partial differential equations”, Appl. Math. Model., 37:3 (2013), 742–752 | DOI | MR