On the analogue of Wintner's theorem for a controlled elliptic equation
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 228-235

Voir la notice de l'article provenant de la source Math-Net.Ru

For a homogeneous Dirichlet problem associated with a controlled semilinear partial differential elliptic equation of the second order, referred as a stationary diffusion–reaction equation, we state analogue of the classical Wintner's theorem concerning the solvability of the Cauchy problem for an ordinary differential equation.
Keywords: controlled semilinear elliptic equation, total preservation of solvability.
@article{IIMI_2015_46_2_a27,
     author = {A. V. Chernov},
     title = {On the analogue of {Wintner's} theorem for a controlled elliptic equation},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {228--235},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a27/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On the analogue of Wintner's theorem for a controlled elliptic equation
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 228
EP  - 235
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a27/
LA  - ru
ID  - IIMI_2015_46_2_a27
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On the analogue of Wintner's theorem for a controlled elliptic equation
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 228-235
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a27/
%G ru
%F IIMI_2015_46_2_a27
A. V. Chernov. On the analogue of Wintner's theorem for a controlled elliptic equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 228-235. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a27/