Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2015_46_2_a26, author = {A. H. Hammady}, title = {On properties of characteristics of attainability set for a control system}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {216--227}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a26/} }
TY - JOUR AU - A. H. Hammady TI - On properties of characteristics of attainability set for a control system JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 216 EP - 227 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a26/ LA - ru ID - IIMI_2015_46_2_a26 ER -
%0 Journal Article %A A. H. Hammady %T On properties of characteristics of attainability set for a control system %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 216-227 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a26/ %G ru %F IIMI_2015_46_2_a26
A. H. Hammady. On properties of characteristics of attainability set for a control system. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 216-227. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a26/
[1] Rodina L. I., Tonkov E. L., “Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center”, Nelin. Dinam., 5:2 (2009), 265–288 (in Russian)
[2] Rodina L. I., “Estimation of statistical characteristics of attainability sets of controllable systems”, Russian Mathematics, 57:11 (2013), 17–27 | DOI | MR | Zbl
[3] Rodina L. I., Hammady A. H., “The characteristics of attainability set connected with invariancy of control systems on the finite time interval”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, 35–48 (in Russian) | Zbl
[4] Filippov A. F., Differential equations with discontinuous righthand sides, Mathematics and its Applications (Soviet Series), 18, Springer, Netherlands, 1988, 304 pp. | DOI | MR | MR
[5] Rodina L. I., “Invariant and statistically weakly invariant sets of control systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 2(40), 3–164 (in Russian) | Zbl
[6] Panasenko E. A., Tonkov E. L., “Lyapunov functions and the positive invariant sets of differential inclusions”, Differentsial'nye uravneniya, 43:6 (2007), 859–860 (in Russian)
[7] Clarke F. H., Optimization and nonsmooth analysis, Wiley, New York, 1983, 308 pp. | MR | MR | Zbl
[8] Hartman Ph., Ordinary differential equations, John Wiley and Sons, New York–London–Sydney, 1964 | MR | MR | Zbl
[9] Chaplygin S. A., A new method of approximate integration of differential equations, Gostekhizdat, M.–L., 1950, 102 pp.
[10] Rodina L. I., “Statistical characteristics of attainable set and periodic processes of control systems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 2, 34–43 (in Russian) | Zbl
[11] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, M., 1967, 472 pp. | MR
[12] Levitan B. M., Zhikov V. V., Almost periodic functions and differential equations, Moscow State University, M., 1978, 205 pp. | MR
[13] Levitan B. M., “Some questions of the theory of almost periodic functions, I”, Uspekhi Matematicheskikh Nauk, 2:5(21) (1947), 133–192 (in Russian) | MR | Zbl