Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2015_46_2_a25, author = {V. N. Ushakov and A. R. Matviychuk}, title = {To solution of control problems of nonlinear systems on a finite time interval}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {202--215}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a25/} }
TY - JOUR AU - V. N. Ushakov AU - A. R. Matviychuk TI - To solution of control problems of nonlinear systems on a finite time interval JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 202 EP - 215 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a25/ LA - ru ID - IIMI_2015_46_2_a25 ER -
%0 Journal Article %A V. N. Ushakov %A A. R. Matviychuk %T To solution of control problems of nonlinear systems on a finite time interval %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 202-215 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a25/ %G ru %F IIMI_2015_46_2_a25
V. N. Ushakov; A. R. Matviychuk. To solution of control problems of nonlinear systems on a finite time interval. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 202-215. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a25/
[1] Krasovskii N. N., Control of dynamic system, Nauka, M., 1985, 520 pp.
[2] Kurzhanskii A. B., “An analytical description of the beam of enduring trajectories of a differential system”, Dokl. AN SSSR, 287:5 (1986), 1047–1050 (in Russian) | MR | Zbl
[3] Kryazhimskii A. V., Osipov Yu. S., “Differential-difference game of encounter with a functional target set”, J. Appl. Math. Mech., 37:1 (1973), 1–10 | DOI | MR | Zbl
[4] Kurzhanskii A. B., Selected works, Moscow State University, M., 2009, 756 pp.
[5] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp.
[6] Chernous'ko F. L., Evaluation of the phase state of dynamical systems: the ellipsoid method, Nauka, M., 1988, 319 pp.
[7] Tonkov E. L., Panasenko E. A., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262 (2008), 194–212 | DOI | MR | MR | Zbl
[8] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “The approximation of reachable domains of control systems”, J. Appl. Math. Mech., 62:2 (1998), 169–175 | DOI | MR | Zbl
[9] Gusev M. I., “Estimates of reachable sets of multidimensional control systems with nonlinear interconnections”, Proceedings of the Steklov Institute of Mathematics, 269, 2010, 134–146 | DOI | Zbl
[10] Filippova T. F., “Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control”, Proceedings of the Steklov Institute of Mathematics, 269, 2010, 95–102 DOI: 10.1134/S008154381006009X | DOI | Zbl
[11] Ushakov V. N., Matviichuk A. R., Parshikov G. V., “A method for constructing a resolving control in an approach problem based on attraction to the feasibility set”, Proceedings of the Steklov Institute of Mathematics, 284, no. suppl. 1, 2014, 135–144 DOI: 10.1134/S0081543814020126 | DOI | MR
[12] Ushakov A. V., “On one version of approximate permitting control calculation in a problem of approaching”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 4, 94–107
[13] Panasyuk A. I., “Equations of the dynamics of sets of reachability in problems of optimization and control under conditions of uncertainty”, J. Appl. Math. Mech., 50:4 (1986), 405–415 | DOI | MR | Zbl
[14] Blagodatskikh V. I., Filippov A. F., “Differential inclusions and optimal control”, Proceedings of the Steklov Institute of Mathematics, 169 (1986), 199–259 | MR | Zbl | Zbl
[15] Taras'ev A. M., Ushakov V. N., Khripunov A. P., “On a computational algorithm for solving game control problems”, J. Appl. Math. Mech., 51:2 (1987), 167–172 | DOI | MR | Zbl