Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2015_46_2_a24, author = {N. N. Subbotina and L. G. Shagalova}, title = {The construction of a continuous generalized solution for the {Hamilton--Jacobi} equations with state constraints}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {193--201}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a24/} }
TY - JOUR AU - N. N. Subbotina AU - L. G. Shagalova TI - The construction of a continuous generalized solution for the Hamilton--Jacobi equations with state constraints JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 193 EP - 201 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a24/ LA - ru ID - IIMI_2015_46_2_a24 ER -
%0 Journal Article %A N. N. Subbotina %A L. G. Shagalova %T The construction of a continuous generalized solution for the Hamilton--Jacobi equations with state constraints %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 193-201 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a24/ %G ru %F IIMI_2015_46_2_a24
N. N. Subbotina; L. G. Shagalova. The construction of a continuous generalized solution for the Hamilton--Jacobi equations with state constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 193-201. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a24/
[1] Kruzhkov S. N., “Generalized solutions of nonlinear equations of the first order with several variables, I”, Matematicheskii Sbornik, 70(112):3 (1966), 394–415 (in Russian) | MR | Zbl
[2] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Transactions of the American Mathematical Society, 277:1 (1983), 1–42 | DOI | MR | Zbl
[3] Subbotin A. I., Generalized solutions of first order PDEs: the dynamical optimization perspective, Birkhauser, Boston, 1995, 312 pp. | MR
[4] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton–Jacobi equations with state constraints”, Transactions of the American Mathematical Society, 318:2 (1990), 643–683 | DOI | MR | Zbl
[5] Crandall M. G., Newcomb R., “Viscosity solutions of Hamilton–Jacobi equations at the boundary”, Proceedings of the American Mathematical Society, 94:2 (1985), 283–290 | DOI | MR | Zbl
[6] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the eigen and the Crow–Kimura models for molecular evolution”, Phys. Rev. E, 78:4 (2005), 041908, 6 pp. | DOI | MR
[7] Clarke F., Optimization and nonsmooth analysis, John Wiley Sons, Inc., New York, 1983, 308 pp. | MR | Zbl
[8] Rockafellar R. T., Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970, 451 pp. | MR | Zbl
[9] Courant R., Hilbert D., Methods of mathematical physics, v. II, Interscience, New York, 1962, 830 pp. | MR | Zbl
[10] Subbotina N. N., Shagalova L. G., “Construction of a continuous minimax/viscosity solution of the Hamilton–Jacobi–Bellman equation with nonextendable characteristics”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 20, no. 4 (2014), 247–257 (in Russian)
[11] Shagalova L., “Applications of dynamic programming to generalized solutions for Hamilton–Jacobi equations with state constraints”, SOP Transactions on Applied Mathematics, 1:2 (2014), 70–83 | DOI
[12] Subbotina N. N., Shagalova L. G., “On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 2, 2011, 191–208 (in Russian)
[13] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Nauka, M., 1966, 576 pp.
[14] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and its Applications, 20 (2004), 2955–3091 | MR
[15] Subbotina N. N., Kolpakova E. A., Tokmantsev T. B., Shagalova L. G., The method of characteristics for Hamilton–Jacobi–Bellman equation, Ural Branch of RAS, Ekaterinburg, 2013, 244 pp.
[16] Subbotina N. N., Shagalova L. G., “On the continuous extension of a generalized solution of the Hamilton–Jacobi equation by characteristics that form a central field of extremals”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 21, no. 2, 2015, 220–235 (in Russian) | MR | Zbl