The construction of a continuous generalized solution for the Hamilton--Jacobi equations with state constraints
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 193-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a boundary value problem with state constraints for a nonlinear non-coercive Hamilton–Jacobi equation. We introduce a new definition of continuous generalized solution of the problem and apply this definition to nonlinear non-coercive equation arising in molecular biology. The construction for generalized solution with additional requirements to structure is provided for this equation. Connections with viscosity generalized solutions are discussed. Results of computer simulations are exposed.
Keywords: Hamilton–Jacobi equation, generalized solution, viscosity solution, minimax solution, state constraints, method of characteristics.
@article{IIMI_2015_46_2_a24,
     author = {N. N. Subbotina and L. G. Shagalova},
     title = {The construction of a continuous generalized solution for the {Hamilton--Jacobi} equations with state constraints},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {193--201},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a24/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - L. G. Shagalova
TI  - The construction of a continuous generalized solution for the Hamilton--Jacobi equations with state constraints
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 193
EP  - 201
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a24/
LA  - ru
ID  - IIMI_2015_46_2_a24
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A L. G. Shagalova
%T The construction of a continuous generalized solution for the Hamilton--Jacobi equations with state constraints
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 193-201
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a24/
%G ru
%F IIMI_2015_46_2_a24
N. N. Subbotina; L. G. Shagalova. The construction of a continuous generalized solution for the Hamilton--Jacobi equations with state constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 193-201. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a24/

[1] Kruzhkov S. N., “Generalized solutions of nonlinear equations of the first order with several variables, I”, Matematicheskii Sbornik, 70(112):3 (1966), 394–415 (in Russian) | MR | Zbl

[2] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Transactions of the American Mathematical Society, 277:1 (1983), 1–42 | DOI | MR | Zbl

[3] Subbotin A. I., Generalized solutions of first order PDEs: the dynamical optimization perspective, Birkhauser, Boston, 1995, 312 pp. | MR

[4] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton–Jacobi equations with state constraints”, Transactions of the American Mathematical Society, 318:2 (1990), 643–683 | DOI | MR | Zbl

[5] Crandall M. G., Newcomb R., “Viscosity solutions of Hamilton–Jacobi equations at the boundary”, Proceedings of the American Mathematical Society, 94:2 (1985), 283–290 | DOI | MR | Zbl

[6] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the eigen and the Crow–Kimura models for molecular evolution”, Phys. Rev. E, 78:4 (2005), 041908, 6 pp. | DOI | MR

[7] Clarke F., Optimization and nonsmooth analysis, John Wiley Sons, Inc., New York, 1983, 308 pp. | MR | Zbl

[8] Rockafellar R. T., Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970, 451 pp. | MR | Zbl

[9] Courant R., Hilbert D., Methods of mathematical physics, v. II, Interscience, New York, 1962, 830 pp. | MR | Zbl

[10] Subbotina N. N., Shagalova L. G., “Construction of a continuous minimax/viscosity solution of the Hamilton–Jacobi–Bellman equation with nonextendable characteristics”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 20, no. 4 (2014), 247–257 (in Russian)

[11] Shagalova L., “Applications of dynamic programming to generalized solutions for Hamilton–Jacobi equations with state constraints”, SOP Transactions on Applied Mathematics, 1:2 (2014), 70–83 | DOI

[12] Subbotina N. N., Shagalova L. G., “On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 2, 2011, 191–208 (in Russian)

[13] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Nauka, M., 1966, 576 pp.

[14] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and its Applications, 20 (2004), 2955–3091 | MR

[15] Subbotina N. N., Kolpakova E. A., Tokmantsev T. B., Shagalova L. G., The method of characteristics for Hamilton–Jacobi–Bellman equation, Ural Branch of RAS, Ekaterinburg, 2013, 244 pp.

[16] Subbotina N. N., Shagalova L. G., “On the continuous extension of a generalized solution of the Hamilton–Jacobi equation by characteristics that form a central field of extremals”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 21, no. 2, 2015, 220–235 (in Russian) | MR | Zbl