Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2015_46_2_a22, author = {I. N. Sergeev}, title = {The complete set of relations between the oscillation, rotation and wandering indicators of~solutions of differential systems}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {171--183}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a22/} }
TY - JOUR AU - I. N. Sergeev TI - The complete set of relations between the oscillation, rotation and wandering indicators of~solutions of differential systems JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 171 EP - 183 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a22/ LA - ru ID - IIMI_2015_46_2_a22 ER -
%0 Journal Article %A I. N. Sergeev %T The complete set of relations between the oscillation, rotation and wandering indicators of~solutions of differential systems %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 171-183 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a22/ %G ru %F IIMI_2015_46_2_a22
I. N. Sergeev. The complete set of relations between the oscillation, rotation and wandering indicators of~solutions of differential systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 171-183. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a22/
[1] Sergeev I. N., “Connection between the oscillation, rotation and wandering of solutions of differential systems”, Control theory and mathematical modelling, Abstracts of All-Russian Conf. Dedicated to prof. N. V. Azbelev and prof. E. L. Tonkov, Udmurt State University, Izhevsk, 2015, 127–128 (in Russian)
[2] Sergeev I. N., “Definition and properties of characteristic frequencies of a linear equation”, Journal of Mathematical Sciences, 135:1 (2006), 2764–2793 | DOI | MR | Zbl
[3] Sergeev I. N., “Oscillation and wandering of solutions to a second order differential equation”, Moscow University Mathematics Bulletin, 66:6 (2011), 250–254 | DOI | MR | MR | Zbl
[4] Sergeev I. N., “Oscillation and wandering characteristics of solutions of a linear differential system”, Izvestiya: Mathematics, 76:1 (2012), 141–164 | DOI | DOI | MR | Zbl
[5] Sergeev I. N., “Properties of characteristic frequencies of linear equations of arbitrary order”, Journal of Mathematical Sciences, 197:3 (2014), 410–426 | DOI | DOI | MR | MR | Zbl | Zbl
[6] Sergeev I. N., “The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems”, Sbornik: Mathematics, 204:1 (2013), 114–132 | DOI | MR | Zbl
[7] Sergeev I. N., “Turnability characteristics of solutions of differential systems”, Differential Equations, 50:10 (2014), 1342–1351 | DOI | DOI | MR | Zbl