On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear Hamiltonian systems
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 163-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the set of all limiting values of solutions' arbitrary indicator of the linear Hamiltonian system under uniformly small perturbations for the linear Hamiltonian system is the same as the similar set obtained by uniformly small Hamiltonian perturbations. Also it is proved that the set of all values of solutions' arbitrary indicator of the linear Hamiltonian system under infinitesimal perturbations for the linear Hamiltonian system is the same as the similar set obtained by infinitesimal Hamiltonian perturbations.
Keywords: linear systems, Hamiltonian systems, Lyapunov exponents, uniformly small perturbations
Mots-clés : infinitesimal perturbations.
@article{IIMI_2015_46_2_a21,
     author = {T. V. Salova},
     title = {On the effectiveness of {Hamiltonian} uniformly small and infinitesimal perturbations of linear {Hamiltonian} systems},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a21/}
}
TY  - JOUR
AU  - T. V. Salova
TI  - On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear Hamiltonian systems
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 163
EP  - 170
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a21/
LA  - ru
ID  - IIMI_2015_46_2_a21
ER  - 
%0 Journal Article
%A T. V. Salova
%T On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear Hamiltonian systems
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 163-170
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a21/
%G ru
%F IIMI_2015_46_2_a21
T. V. Salova. On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear Hamiltonian systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a21/

[1] Arnol'd V. I., Mathematical methods of classical mechanics, Editorial URSS, M., 2000, 408 pp.

[2] Barabanov E. A., “The structure of the set of lower Perron exponents of a linear differential system”, Differ. Uravn., 22:11 (1986), 1843–1853 (in Russian) | MR | Zbl

[3] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, M., 1966, 576 pp.

[4] Bylov B. F., Izobov N. A., “Necessary and sufficient conditions for the stability of the characteristic exponents of a linear system”, Differ. Uravn., 5:10 (1969), 1794–1803 (in Russian) | MR | Zbl

[5] Veremenyuk V. V., “Some questions of the theory of stability of Lyapunov exponents of linear Hamiltonian systems”, Differ. Uravn., 18:2 (1982), 205–219 (in Russian) | MR | Zbl

[6] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, M., 1967, 472 pp.

[7] Izobov N. A., “On the set of lower exponents of a linear differential system”, Differ. Uravn., 1:4 (1965), 469–477 (in Russian) | MR | Zbl

[8] Izobov N. A., Introduction to the theory of Lyapunov exponents, Minsk, 2006, 319 pp.

[9] Lyapunov A. M., General problem of stability of movement, Cherepovets, 2000, 386 pp.

[10] Millionshchikov V. M., “A proof of the accesibility of the central exponents of linear systems”, Sibirsk. Mat. Zh., 10:1 (1969), 99–104 (in Russian) | MR

[11] Millionshchikov V. M., “Baire's classes of functions and Lyapunov exponents, I”, Differ. Uravn., 16:8 (1980), 1408–1416 (in Russian) | MR

[12] Millionshchikov V. M., “Structurally stable properties of linear systems of differential equations”, Differ. Uravn., 5:10 (1969), 1775–1784 (in Russian) | MR | Zbl

[13] Salova T. V., “On the effectiveness of perturbations in the class of linear Hamiltonian systems”, Differential Equations, 51:1 (2015), 144–145 | DOI | DOI | MR | MR | Zbl

[14] Salova T. V., “On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear systems”, Control Theory and Mathematical Modeling, Abstracts of All-Russian Conference, dedicated to the memory of professor N. V. Azbelev and professor E. L. Tonkov, Udmurt State University, Izhevsk, 2015, 119–121 (in Russian)

[15] Salova T. V., “On the effectiveness of perturbations in the class of linear Hamiltonian systems”, Vestnik Moskov. Gos. Univ. Ser. I Mat. Mekh., 2015, no. 6, 48–52 (in Russian)

[16] Sergeev I. N., “On the theory of Lyapunov exponents of linear systems of differential equations”, Tr. Semin. im. I. G. Petrovskogo, 9, 1983, 111–166 (in Russian) | MR | Zbl

[17] Sergeev I. N., “Partial limits of Lyapunov exponents of linear systems and their reachability”, Differ. Uravn., 35:6 (1999), 858 (in Russian) | Zbl

[18] Sergeev I. N., “Oscillatory and wandering characteristics of solutions of linear differential system”, Izv. Ross. Akad. Nauk. Ser. Mat., 76:1 (2012), 149–172 (in Russian) | DOI | MR | Zbl

[19] Sergeev I. N., “Accurate assessment of the effectiveness of Hamiltonian perturbations of linear systems”, Differ. Uravn., 51:6 (2015), 821–822 (in Russian) | MR