Modified statistical algorithms for filtering and extrapolation in continuous-time stochastic systems
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 155-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve the optimal filtering and extrapolation problems for continuous-time stochastic systems, which are described by stochastic differential equations, we propose new algorithms based on modeling the paths of the special random process with terminating and branching. In previous papers the “maximal section algorithm” has been used, but in this paper we use the definition only for inhomogeneous Poisson flows modeling. Therefore, it is not necessary to build a separate grid for each path of the random process with terminating and branching in the numerical solution of stochastic differential equations. The proposed algorithms are easier, they are preferred for real-time optimal filtering and extrapolation.
Keywords: branching process, optimal filtering, statistical modeling, stochastic system.
Mots-clés : extrapolation
@article{IIMI_2015_46_2_a20,
     author = {K. A. Rybakov},
     title = {Modified statistical algorithms for filtering and extrapolation in continuous-time stochastic systems},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {155--162},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a20/}
}
TY  - JOUR
AU  - K. A. Rybakov
TI  - Modified statistical algorithms for filtering and extrapolation in continuous-time stochastic systems
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 155
EP  - 162
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a20/
LA  - ru
ID  - IIMI_2015_46_2_a20
ER  - 
%0 Journal Article
%A K. A. Rybakov
%T Modified statistical algorithms for filtering and extrapolation in continuous-time stochastic systems
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 155-162
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a20/
%G ru
%F IIMI_2015_46_2_a20
K. A. Rybakov. Modified statistical algorithms for filtering and extrapolation in continuous-time stochastic systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 155-162. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a20/

[1] Kazakov I. E., Artem'ev V. M., Bukhalev V. A., Analysis of systems with random structure, Fizmatlit, M., 1993, 272 pp.

[2] Mikhailov G. A., Averina T. A., “The maximal section algorithm in the Monte Carlo method”, Doklady Mathematics, 80:2 (2009), 671–673 | DOI | MR | Zbl

[3] Mikhailov G. A., Rogazinskii S. V., “The modified majorant frequency method for numerical simulation of the generalized exponential distribution”, Doklady Mathematics, 85:3 (2012), 325–327 | DOI | MR | Zbl

[4] Panteleev A. V., Rudenko E. A., Bortakovskii A. S., Nonlinear control systems: description, analysis, and synthesis, Vuzovskaya kniga, M., 2008, 312 pp.

[5] Rybakov K. A., “Reducing the nonlinear filtering problem to the analysis of stochastic systems with terminating and branching paths”, Differentsial'nye uravneniya i protsessy upravleniya, 2012, no. 3, 91–110 (in Russian)

[6] Rybakov K. A., “Extrapolation algorithms for stochastic differential systems based on modeling special branching process”, Differentsial'nye uravneniya i protsessy upravleniya, 2015, no. 1, 25–38 (in Russian) | MR

[7] Sinitsyn I. N., Kalman and Pugachev filters, Logos, M., 2007, 776 pp.

[8] Tikhonov V. I., Kul'man N. K., Nonlinear filtering and quasi-coherent reception of signals, Sovetskoe radio, M., 1975, 704 pp.

[9] Bain A., Crisan D., Fundamentals of stochastic filtering, Springer, New York, 2009, XIII+390 pp. | MR | Zbl

[10] Candy J. V., Bayesian signal processing: classical, modern and particle filtering methods, John Wiley Sons, New York, 2009, 472 pp.