Some properties of open ultrafilters
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 140-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the space of ultrafilters for an arbitrary topological space under natural equipment similar to that used in construction of Stone compactum. It is showed that above ultrafilters space is extremely disconnected compactum. We consider the families of sets in the space of ultrafilters majorizing (any time) the filter of open neighborhoods of a fixed point of initial space. Conditions guaranteeing mutually disjointness and distinguishability of sets for the given family are investigated; in particular, a special axiom of separability connected with support of mentioned distinguishability is introduced.
Keywords: neighborhood, topology, ultrafilter, centered system.
@article{IIMI_2015_46_2_a18,
     author = {E. G. Pytkeev and A. G. Chentsov},
     title = {Some properties of open ultrafilters},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {140--148},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a18/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - A. G. Chentsov
TI  - Some properties of open ultrafilters
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 140
EP  - 148
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a18/
LA  - ru
ID  - IIMI_2015_46_2_a18
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A A. G. Chentsov
%T Some properties of open ultrafilters
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 140-148
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a18/
%G ru
%F IIMI_2015_46_2_a18
E. G. Pytkeev; A. G. Chentsov. Some properties of open ultrafilters. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 140-148. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a18/

[1] Pytkeev E. G., Chentsov A. G., “On the structure of ultrafilters and properties related to convergence in topological spaces”, Proceedings of the Steklov Institute of Mathematics, 289, 2015, 164–181 | DOI | MR | MR

[2] Chentsov A. G., Pytkeev E. G., “Some topological structures of extensions of abstract reachability problems”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 20, no. 4, 2014, 312–329 (in Russian) | MR

[3] Iliadis S. D., Fomin S. V., “The method of centred systems in the theory of topological spaces”, Russian Mathematical Surveys, 21:4 (1966), 37–62 | DOI | MR | Zbl

[4] Pytkeev E. G., Chentsov A. G., “Some structures of extensions using ultrafilters of topological spaces”, Control Theory and Mathematical Modeling, Abstracts of All-Russian conference, Udmurt State University, Izhevsk, 2015, 331–333 (in Russian)

[5] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 113–142 (in Russian) | Zbl

[6] Aleksandrov P. S., Introduction to the theory of sets and general topology, Editorial URSS, M., 2004, 368 pp.

[7] Engelking R., General Topology, Polish Scientific Publishers, Warsaw, 1977, 626 pp. | MR | MR | Zbl