Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2015_46_2_a10, author = {A. I. Korotkii and Yu. V. Starodubtseva}, title = {Reconstruction of boundary controls in reaction--convection--diffusion model}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {85--92}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a10/} }
TY - JOUR AU - A. I. Korotkii AU - Yu. V. Starodubtseva TI - Reconstruction of boundary controls in reaction--convection--diffusion model JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 85 EP - 92 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a10/ LA - ru ID - IIMI_2015_46_2_a10 ER -
%0 Journal Article %A A. I. Korotkii %A Yu. V. Starodubtseva %T Reconstruction of boundary controls in reaction--convection--diffusion model %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 85-92 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a10/ %G ru %F IIMI_2015_46_2_a10
A. I. Korotkii; Yu. V. Starodubtseva. Reconstruction of boundary controls in reaction--convection--diffusion model. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 85-92. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a10/
[1] Marchuk G. I., Mathematical modeling in environmental problem, Nauka, M., 1982, 319 pp.
[2] Samarskii A. A., Vabishchevich P. N., Computational heat transfer, Editorial URSS, M., 2003, 784 pp.
[3] Samarskii A. A., Vabishchevich P. N., Numerical methods for solving inverse problems of mathematical physics, Editorial URSS, M., 2004, 478 pp.
[4] Kabanikhin S. I., Inverse and ill-posed problem, Sibirskoe nauchnoe izdatel'stvo, Novosibirsk, 2009, 457 pp.
[5] Korotkii A. I., Kovtunov D. A., “Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 12, no. 2 (2006), 88–97 (in Russian)
[6] Ladyzhenskaya O. A., Boundary value problem of mathematical physics, Nauka, M., 1973, 408 pp.
[7] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and quasilinear elliptic equations, Nauka, M., 1973, 576 pp.
[8] Ladyzhenskaya O. A., Mathematical problems in the dynamics of a viscous incompressible fluid, Fizmatlit, M., 1961, 203 pp.
[9] Alekseev G. V., Tereshhko D. A., Analysis and optimization in viscous fluid hydrodynamics, Dal'nauka, Vladivostok, 2008, 365 pp.
[10] Mikhailov V. P., Partial differential equations, Nauka, M., 1976, 392 pp.
[11] Adams R. A., Sobolev spaces, Academic Press, New York, 1975, 268 pp. | MR | Zbl
[12] Sobolev S. L., Some applications of functional analysis in mathematical physics, Nauka, M., 1988, 336 pp.
[13] Lions G.-L., Optimal control of systems described by partial differential equations, Mir, M., 1972, 414 pp.
[14] Fursikov A. V., Optimal control of distributed systems. Theory and applications, Nauchnaya kniga, Novosibirsk, 1999, 352 pp.
[15] Kolmogorov A. N., Fomin S. V., Elements of the functions theory and functional analysis, Nauka, M., 1972, 496 pp.