Problems of group pursuit with equal opportunities in a presence of defenders for an evader
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions for multiple capture in the group pursuit problems with equal opportunities in the presence of a group of defenders for an evader are obtained. Capture means a coincidence of geometric coordinates for the evader and the pursuer if the latter up to the moment of capture was possible to avoid a meeting with all the defenders of the evader. Multiple capture occurs when a given number of pursuers catch an evader and the moments of capture may not coincide. In the nonstrict simultaneous multiple capture problem, one needs a coincidence of capture times.
Keywords: differential game, group pursuit, multiple capture, evader defenders.
@article{IIMI_2015_46_2_a1,
     author = {A. I. Blagodatskikh},
     title = {Problems of group pursuit with equal opportunities in a presence of defenders for an evader},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {13--20},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a1/}
}
TY  - JOUR
AU  - A. I. Blagodatskikh
TI  - Problems of group pursuit with equal opportunities in a presence of defenders for an evader
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 13
EP  - 20
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a1/
LA  - ru
ID  - IIMI_2015_46_2_a1
ER  - 
%0 Journal Article
%A A. I. Blagodatskikh
%T Problems of group pursuit with equal opportunities in a presence of defenders for an evader
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 13-20
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a1/
%G ru
%F IIMI_2015_46_2_a1
A. I. Blagodatskikh. Problems of group pursuit with equal opportunities in a presence of defenders for an evader. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 46 (2015) no. 2, pp. 13-20. http://geodesic.mathdoc.fr/item/IIMI_2015_46_2_a1/

[1] Isaacs R., Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization, John Wiley and Sons, New York, 1965, 384 pp. | MR | Zbl

[2] Pontryagin L. S., “A linear differential evasion game”, Proceedings of the Steklov Institute of Mathematis, 112, 1971, 27–60 | MR | Zbl

[3] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp.

[4] Petrosyan L. A., Pursuit differential games, Leningrad State University, Leningrad, 1977, 222 pp.

[5] Chernous'ko F. L., Melikyan A. A., Control and search game problems, Nauka, M., 1978, 272 pp.

[6] Petrosyan L. A., “Games prosecution with the line of life with many participants”, Izv. Akad. Nauk Arm. SSR. Matematika, 1:5 (1966), 331–340 | MR | Zbl

[7] Pshenichnyi B. N., “Simple pursuit by several objets”, Kibernetika, 1976, no. 3, 145–146 (in Russian)

[8] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, M., 1990, 197 pp.

[9] Chikrii A. A., Conflict control processes, Naukova Dumka, Kiev, 1992, 380 pp.

[10] Petrov N. N., “Multiple capture in Pontryagin's example with phase constraints”, Journal of Applied Mathematics and Mechanics, 61:5 (1997), 725–732 | DOI | MR | Zbl

[11] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp.

[12] Blagodatskikh A. I., “Simultaneous multiple capture in a simple pursuit problem”, Journal of Applied Mathematics and Mechanics, 73:1 (2009), 36–40 | DOI | MR | Zbl

[13] Blagodatskikh A. I., “Simultaneous multiple capture of evaders in a simple group pursuit problem”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 13–18 (in Russian)

[14] Blagodatskikh A. I., “Simultaneous multiple capture in a conflict-controlled process”, Journal of Applied Mathematics and Mechanics, 77:3 (2013), 314–320 | DOI | MR | Zbl

[15] Blagodatskikh A. I., “Capture of a group of evaders in a conflict-controlled process”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 20–26 (in Russian)

[16] Blagodatskikh A. I., “Problem of simple group pursuit with equal opportunities at presence defenders evader”, Mat. Teor. Igr Prilozh., 6:2 (2014), 32–41 (in Russian) | MR

[17] Demidovich B. P., Lectures on mathematical theory of stability, Nauka, M., 1967, 472 pp.