Stone spaces of some Boolean algebras
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 45 (2015) no. 1, pp. 3-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Stone spaces of some Boolean algebras and establish relations between subsets of this spaces and Chech–Stone space $\beta\omega$, Cantor set, and other spaces. We consider three countable partially ordered sets and two type of Boolean algebras for each set. First, we consider space $S\mathfrak B_{1,1}$ constructered by M. Bell. We prove existence of subsets homeomorphic to $\beta\omega$ and convergent sequences in $S\mathfrak B_{1,1}$. For space $S\mathfrak B_{1,2}$, we prove that there are clopen subsets which is homeomorphic to $\beta\omega$ and remainder $S\mathfrak B_{1,2}^*$ consists of isolated points. We describe clopen subsets of $S\mathfrak B_{1,1}$ which are gomeomorphic to $\beta\omega$. We construct two examples: subset of $\mathfrak{N}_2$ which closure is non-open copy of $\beta\omega$ and subset of $\mathfrak{N}_2$ which closure is clopen and not gomeomorphic to $\beta\omega$. $S\mathfrak B_{1,2}$ is closure subset of $S\mathfrak B_{1,1}$ and $S\mathfrak B_{1,2}^*$ is nowhere dense in $S\mathfrak B_{1,1}^*$. Next, we consider the space $S\mathfrak B_{1,3}$. The subspace of free ultrafilters of $S\mathfrak B_{1,3}$ has the countable Suslin number, but is not separable. The points of the space are described as ultrafilters possessing basis of certain types. Next, we consider the spaces $S\mathfrak B_{2,1}$, $S\mathfrak B_{2,2}$, and $S\mathfrak B_{2,3}$. Boolean algebras for those Stone spaces have more simple structure. $S\mathfrak B_{2,3}$ is homeomorphic to Cantor set. The subset of free ultrafilters $S\mathfrak B_{2,3}^*$ is homeomorphic to the set of irrational numbers with natural topology. The subsets of free ultrafilters $S\mathfrak B_{1,3}^*$ and $S\mathfrak B_{1,3}^*$ are homeomorphic to Cantor set.
Mots-clés : compactification
Keywords: Boolean algebra, Stone space, ultrafilter.
@article{IIMI_2015_45_1_a0,
     author = {R. A. Golovastov},
     title = {Stone spaces of some {Boolean} algebras},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--36},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_45_1_a0/}
}
TY  - JOUR
AU  - R. A. Golovastov
TI  - Stone spaces of some Boolean algebras
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 3
EP  - 36
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_45_1_a0/
LA  - ru
ID  - IIMI_2015_45_1_a0
ER  - 
%0 Journal Article
%A R. A. Golovastov
%T Stone spaces of some Boolean algebras
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 3-36
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2015_45_1_a0/
%G ru
%F IIMI_2015_45_1_a0
R. A. Golovastov. Stone spaces of some Boolean algebras. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 45 (2015) no. 1, pp. 3-36. http://geodesic.mathdoc.fr/item/IIMI_2015_45_1_a0/

[1] Aleksandrov P. S., Introduction to the set theory and general topology, Nauka, M., 1977

[2] Arkhangel'skii A. V., Ponomarev V. I., Fundamentals of general topology in problems and exercises, Nauka, M., 1974

[3] Arkhangel'skii A. V., “Construction and classification of topological spaces and cardinal numbers”, Usp. Mat. Nauk, 33:6 (1978), 29–34 (in Russian) | Zbl

[4] Bastrykov E. S., “About some points of Bell's compactification of countable discrete space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 4, 3–6 (in Russian) | MR

[5] Golovastov R. A., “About one compactifications of countable discrete space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 14–19 (in Russian)

[6] Golovastov R. A., “About Stone space of one Boolean algebra”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 19–24 (in Russian) | MR

[7] Gryzlov A. A., “On compactifications of discrete spaces”, Fundam. Prikl. Mat., 2:3 (1996), 803–848 (in Russian) | MR | Zbl

[8] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $N$”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 3, 10–17 (in Russian)

[9] Gryzlov A. A., Bastrykov E. S., “Some centered systems of sets and points defined by them”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 4, 2011, 76–82 (in Russian)

[10] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, 11–16 (in Russian)

[11] Gryzlov A. A., Golovastov R. A., “On the density and Suslin number of subsets of one Stone space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 18–24 (in Russian)

[12] Malykhin V. I., “Some non-normal subspaces of $\beta X$ where $X$ is discrete space”, Dokl. Akad. Nauk SSSR, 211 (1973), 781–783 (in Russian) | MR | Zbl

[13] Sikorski R., Boolean algebras, Mir, M., 1969

[14] Engelking R., General topology, Mir, M., 1986, 751 pp.

[15] Bell M. G., “Compact ccc non-separable spaces of small weight”, Topology Proceedings, 5 (1980), 11–25 http://topo.math.auburn.edu/tp/reprints/v05/tp05002s.pdf | MR

[16] Gryzlov A. A., “On the Rudin–Keisler order on ultrafilters”, Topol. Appl., 76 (1997), 151–155 | MR | Zbl

[17] Gryzlov A. A., “Independent matrices and some points of $\beta\tau$”, Topol. Appl., 107 (2002), 79–81 | MR

[18] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “On Bell's compactification of $N$”, Topology Proceedings, 35 (2010), 177–185 | MR | Zbl

[19] Gryzlov A. A., “On convergent sequences and copies of $\beta N$ in the Stone space of one boolean algebra”, Topology Proceedings, 42 (2013), 165–171 | MR | Zbl

[20] Frolik Z., “Homogenity problems for extremally disconnected spaces”, Comment. Math. Univ. Carolinae, 8 (1967), 757–763 | MR | Zbl

[21] Frolik Z., “Sums of ultrafilters”, Bull. Amer. Math. Soc., 73 (1967), 87–91 | MR | Zbl

[22] Kunen K., “Ultrafilters and independent sets”, Trans. Amer. Math. Soc., 172 (1972), 295–306 | MR

[23] Kunen K., “Some points in $\beta N$”, Math. Proc. Cambrige Phil. Soc., 80 (1976), 385–398 | MR | Zbl

[24] Kunen K., “Weak $p$-points in $N^*$”, Topology, Coll. Math. Soc. Janos Bolyai, 23, 1978, 741–749 | MR

[25] van Mill J., “Weak $p$-points in compact $P$-spaces”, Topology Proceedings, 4:2 (1979), 605–628 | MR

[26] van Mill J., An introduction to $\beta\omega\setminus\omega$, Vrige Univ., Amsterdam, 1981

[27] van Mill J., “Weak $p$-points in Chech–Stone compactifications”, Trans. Amer. Math. Soc., 173:2 (1982), 657–678 | MR

[28] Rudin M. E., “Types of ultrafilters”, Topology Seminar (Wisconsin, 1965), 145 | MR | Zbl

[29] Rudin M. E., “Partial orders on the types in $\beta N$”, Trans. Amer. Math. Soc., 155:2 (1971), 353–362 | MR | Zbl

[30] Rudin M. E., “Lectures on set-theoretic topology”, Reg. Conf. Ser. Math., 23, Univ. Wyoming, 1974 | MR

[31] Rudin W., “Homogenety problems in the theory of Čech compactifications”, Duke Math. J., 23:3 (1956), 409–426 | MR