Risk minimization under functional constraints on the dynamic disturbance
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 44 (2014) no. 2, pp. 3-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this review the application of the Niehans–Savage criterion to control problems under dynamic disturbances is discussed: motivation and formulation of the risk minimizing problem are given; direct relations for the results in different classes of disturbance constraints and solving strategies are provided; the examples of solving process for various problems with this control criteria are given; the results obtained by using the Niehans–Savage criterion are compared with the results based on the classic minimax criterion; the conditions of unimprovability of the strategies with full memory are studied; the optimal risk function as a limit of iterative program construct for the functional of regret is presented; the regularity condition for this functional is given; some additional conditions on the control system to ensure the possibility of numerical implementation of the risk-optimal strategy are considered.
Keywords: full memory strategy, Savage criterion, functionally limited disturbance.
@article{IIMI_2014_44_2_a0,
     author = {D. A. Serkov},
     title = {Risk minimization under functional constraints on the dynamic disturbance},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--95},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2014_44_2_a0/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - Risk minimization under functional constraints on the dynamic disturbance
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2014
SP  - 3
EP  - 95
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2014_44_2_a0/
LA  - ru
ID  - IIMI_2014_44_2_a0
ER  - 
%0 Journal Article
%A D. A. Serkov
%T Risk minimization under functional constraints on the dynamic disturbance
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2014
%P 3-95
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2014_44_2_a0/
%G ru
%F IIMI_2014_44_2_a0
D. A. Serkov. Risk minimization under functional constraints on the dynamic disturbance. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 44 (2014) no. 2, pp. 3-95. http://geodesic.mathdoc.fr/item/IIMI_2014_44_2_a0/

[1] Isaacs R., Differential games, John Wiley and Sons, Inc., New York, 1965, 384 pp. | MR | MR | Zbl

[2] Krasovskii N. N., Differential games, Lectures on control theory, 3, Ural State University, Sverdlovsk, 1970, 88 pp.

[3] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988, xi+517 pp. | MR | MR | Zbl

[4] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981, 288 pp. | MR

[5] Krasovskii N. N., Control of a dynamic system, Nauka, M., 1985, 520 pp. | MR

[6] Kryazhimskii A. V., “The problem of optimization of the ensured result: unimprovability of full-memory strategies”, Constantin Caratheodory: An International Tribute, 1991, 636–675 | DOI | MR

[7] Barabanova N. N., Subbotin A. I., “On continuous evasion strategies in game problems on the encounter of motions”, J. Appl. Math. Mech., 34:5 (1970), 765–772 | DOI | MR | Zbl

[8] Barabanova N. N., Subbotin A. I., “On classes of strategies in differential games of evasion of contact”, J. Appl. Math. Mech., 35:3 (1971), 349–356 | DOI | MR | Zbl

[9] Krasovskii N. N., Game problems on motion encounter, Nauka, M., 1970, 420 pp. | MR | Zbl

[10] Krasovskii N. N., Subbotin A. I., “On the structure of differential games”, Dokl. Akad. Nauk SSSR, 190:3 (1970), 523–526 (in Russian) | MR

[11] Krasovskii N. N., Subbotin A. I., “An alternative for the game problem of convergence”, J. Appl. Math. Mech., 34:6 (1970), 948–965 | DOI | MR

[12] Niehans J., “Zur Preisbildung bei ungewissen Erwartungen”, Scbweizerische Zietschrift fur Volkswirtschaft und Statistik, 84:5 (1948), 433–456

[13] Savage L. J., “The theory of statistical decision”, Journal of the American Statistical Association, 46:253 (1951), 55–67 | DOI | Zbl

[14] Salmon David M., “Policies and controller design for a pursuing vehicle”, IEEE Transactions on Automatic Control, AC-14:5 (1969), 482–488 | DOI

[15] Warga J., Optimal control of differential and functional equations, Academic Press, New York–London, 1972, 531 pp. | MR | MR | Zbl

[16] Serkov D. A., “Optimal guarantee under the disturbances of Caratheodory type”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 2, 74–83 (in Russian) | Zbl

[17] Natanson I. P., Theory of functions of a real variable, Frederick Ungar Publishing Co., New York, 1955, 277 pp. | MR | MR

[18] Chentsov A. G., “Game problem on minimax functional”, Dokl. Akad. Nauk SSSR, 230:5 (1976), 1047–1050 (in Russian) | MR | Zbl

[19] Subbotin A. I., Generalized solutions of partial differential equations of the first order. Perspectives of dynamical optimization, Institute of Computer Science, M.–Izhevsk, 2003, 336 pp.

[20] Serkov D. A., “Minimax risk (regret) strategy in the system with simple motion”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 13, no. 3, 2007, 121–135 (in Russian)

[21] Subbotina N. N., “Universal optimal strategies in positional differential games”, Differ. Equations, 19 (1983), 1377–1382 | MR | Zbl

[22] Serkov D. A., “On the unimprovability of full memory strategies in the risk minimization problem”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 19, no. 4, 2013, 222–230 (in Russian)

[23] Kryazhimskii A. V., Osipov Yu. S., “Position modeling of a control in a dynamical system”, Izv. Akad. Nauk SSSR: Tekhn. Kibernet., 1983, no. 2, 51–60 (in Russian) | MR

[24] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach Publishers, London, 1995, 625 pp. | MR | Zbl

[25] Serkov D. A., “Optimal risk control under functionally restricted disturbances”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 5:1 (2013), 74–103 (in Russian) | Zbl

[26] Chentsov A. G., “On a game problem of guidance”, Sov. Math., Dokl., 17 (1976), 73–77 | MR | Zbl

[27] Chentsov A. G., “On a game problem of guidance with information memory”, Sov. Math., Dokl., 17 (1976), 411–414 | MR | Zbl

[28] Chentsov A. G., “An iterative program construction for a differential game with fixed termination time”, Sov. Math., Dokl., 19 (1978), 559–562 | MR | Zbl

[29] Chentsov A. G., “On a game problem of converging at a given instant of time”, Mathematics of the USSR-Sbornik, 28:3 (1976), 353–376 | DOI | MR | Zbl

[30] Petrosyan L. A., Chistyakov S. V., “On one approach to solving games of pursuit”, Vestnik LGU. Mat. Mekh. Astron., 1977, no. 1, 77–82 (in Russian) | Zbl

[31] Chistyakov S. V., “On solving pursuit game problems”, J. Appl. Math. Mech., 41:5 (1977), 845–852 | DOI | MR

[32] Chistyakov S. V., “On functional equations in games of encounter at a prescribed instant”, J. Appl. Math. Mech., 46:5 (1982), 704–706 | DOI | MR | Zbl

[33] Chistyakov S. V., “Programmed iterations and universal $\varepsilon$-optimal strategies in a positional differential game”, Sov. Math., Dokl., 44:1 (1992), 354–357 | MR | Zbl

[34] Chistyakov S. V., “Operators of the value in the theory of differential games”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2006, no. 3(37), 169–172 (in Russian)

[35] Chistyakov S. V., Nikitin F. F., “Existence and uniqueness theorem for a generalized Isaacs–Bellman equation”, Differ. Equations, 43:6 (2007), 757–766 | DOI | MR | Zbl

[36] Melikyan A. A., “The value of a game in a linear differential game of convergence”, Sov. Math., Dokl., 18 (1977), 1457–1461 | MR | Zbl

[37] Ukhobotov V. I., “Construction of a stable bridge for a class of linear games”, J. Appl. Math. Mech., 41:2 (1977), 350–354 | DOI | MR

[38] Serkov D. A., “Strongly optimal strategies”, Sov. Math., Dokl., 44:3 (1992), 683–687 | MR | Zbl

[39] Oxtoby J., Measure and category, Springer-Verlag, New York, 1971, 96 pp. | DOI | MR

[40] Filippov V. V., “On the theory of the Cauchy problem for an ordinary differential equation with discontinuous right-hand side”, Russ. Acad. Sci. Sb. Math., 83:2 (1995), 383–403 | DOI | MR | Zbl

[41] Yosida K., Functional analysis, Springer-Verlag, Berlin–Heidelberg–New York, 1965, 458 pp. | MR | MR | Zbl