Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2014_43_1_a2, author = {E. L. Tonkov}, title = {Turnpike motions of control systems {(I)}}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {68--114}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2014_43_1_a2/} }
TY - JOUR AU - E. L. Tonkov TI - Turnpike motions of control systems (I) JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2014 SP - 68 EP - 114 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2014_43_1_a2/ LA - ru ID - IIMI_2014_43_1_a2 ER -
E. L. Tonkov. Turnpike motions of control systems (I). Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 43 (2014) no. 1, pp. 68-114. http://geodesic.mathdoc.fr/item/IIMI_2014_43_1_a2/
[1] Filippov A. F., Differential equations with discontinuous righthand sides, Kluwer Academic Publishers, Dordrecht, 1988 | MR | MR | Zbl
[2] G. D. Birkhoff, Dynamical systems, American Mathematical Society, New York, 1927, 295 pp. | MR
[3] Katok A., Hasselblat B., Introduction to the modern theory of dynamical systems, Cambridge University Press, 1997, 802 pp. | MR | Zbl
[4] Bebutov M. V., “Dynamical systems in the space of continuous function”, Bull. Mat. Inst. Moscow State University, 2:5 (1940), 1–52 (in Russian)
[5] Nemytskii V. V., Stepanov V. V., Qualitative theory of differential equations, Courier Dover Publications, 1989, 523 pp.
[6] Agrachev A. A., Sachkov Yu. L., Geometric control theory, Fizmatlit, M., 2005, 391 pp.
[7] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry — methods and applications, v. I, The geometry of surfaces, transformation groups, and fields, Springer, 1992, 470 pp. | MR | Zbl
[8] Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 35, VINITI, M., 1989, 240 pp. | MR
[9] Arnol'd V. I., Ordinary differential equations, Nauka, M., 1971, 239 pp. | MR
[10] Arnol'd V. I., Additional chapters of the theory of ordinary differential equations, Nauka, M., 1978, 304 pp. | MR
[11] Krein S. G., Yatskin N. I., Linear differential equations on manifolds, Voronezh State University, Voronezh, 1980, 131 pp. | MR
[12] Pontryagin L. S., Ordinary Differential Equations, Nauka, M., 1965, 331 pp. | MR | Zbl
[13] Myshkis A. D., Linear differential equations with the retarded argument, Nauka, M., 1972, 361 pp. | MR | Zbl
[14] Hale J., Theory of functional differential equations, Springer-Verlang, Berlin, 1977, 231 pp. | MR | MR | Zbl
[15] Krasovskii N. N., Some problems in the theory of stability of motion, Fizmatgiz, M., 1959, 211 pp. | MR
[16] Demidovich B. P., Lectures on the mathematical stability theory, Nauka, M., 1967, 472 pp. | MR
[17] Levitan B. M., Almost periodic functions, Gostekhizdat, M., 1953, 396 pp. | Zbl
[18] Levitan B. M., Zhikov V. V., Almost periodic functions and differential equations, CUP Archive, 1982, 211 pp. | MR | MR
[19] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., Mathematical theory of optimal processes, Nauka, M., 1969, 384 pp.
[20] Engel'king R., General Topology, Mir, M., 1986, 751 pp. | MR
[21] Skvortsov V. A., “Borel set”, Mathematical encyclopedia, v. 1, Soviet Encyclopedia, M., 1977, 535
[22] Hausdorff F., Set theory, American Mathematical Soc., 1957, 352 pp. | MR
[23] Milich N. V., Structure of the set of control and position control of a linear nonstationary system, Cand. Sci. (Phys.-Math.) Dissertation, Izhevsk, 2000, 117 pp. (in Russian) http://minimax.school.udsu.ru/files/1275393018.pdf
[24] Nikolaev S. F., Properties of the speed function and position control of a linear nonstationary system, Cand. Sci. (Phys.-Math.) Dissertation, Izhevsk, 1998, 117 pp. (in Russian) http://minimax.school.udsu.ru/files/1275393020.pdf