Turnpike motions of control systems (I)
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 43 (2014) no. 1, pp. 68-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is intended primarily for graduate students specializing in differential equations. It covers the applications to control systems of the well-developed theory of classical dynamic systems, methods of differential geometry and the theory of differential inclusions, mainly developed by A. F Filippov. The main content of the paper is the study of the so-called standard control system. The phase space of such a system is a finite-dimensional smooth manifold. This assumption is very important from the point of view of applications. In addition, it is assumed that the vector field of the system is locally Lipschitz, and the geometric constraints on the controlled parameters are compact. Admissible control functions can be program and / or positional. In the first case, we arrive at the so-called systems of Caratheodory equations. In the second case, if the vector field is discontinuous with respect to phase variables, we arrive at Filippov's differential inclusions. Serious attention is given to the study of the conditions under which specified properties of the control system continue to hold after closing the set of shifts (in the topology of uniform convergence on compact sets) of the initial standard control system.
Keywords: dynamic systems, finite-dimensional smooth manifolds, ordinary differential equations, control systems, turnpike motions.
@article{IIMI_2014_43_1_a2,
     author = {E. L. Tonkov},
     title = {Turnpike motions of control systems {(I)}},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {68--114},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2014_43_1_a2/}
}
TY  - JOUR
AU  - E. L. Tonkov
TI  - Turnpike motions of control systems (I)
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2014
SP  - 68
EP  - 114
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2014_43_1_a2/
LA  - ru
ID  - IIMI_2014_43_1_a2
ER  - 
%0 Journal Article
%A E. L. Tonkov
%T Turnpike motions of control systems (I)
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2014
%P 68-114
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2014_43_1_a2/
%G ru
%F IIMI_2014_43_1_a2
E. L. Tonkov. Turnpike motions of control systems (I). Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 43 (2014) no. 1, pp. 68-114. http://geodesic.mathdoc.fr/item/IIMI_2014_43_1_a2/

[1] Filippov A. F., Differential equations with discontinuous righthand sides, Kluwer Academic Publishers, Dordrecht, 1988 | MR | MR | Zbl

[2] G. D. Birkhoff, Dynamical systems, American Mathematical Society, New York, 1927, 295 pp. | MR

[3] Katok A., Hasselblat B., Introduction to the modern theory of dynamical systems, Cambridge University Press, 1997, 802 pp. | MR | Zbl

[4] Bebutov M. V., “Dynamical systems in the space of continuous function”, Bull. Mat. Inst. Moscow State University, 2:5 (1940), 1–52 (in Russian)

[5] Nemytskii V. V., Stepanov V. V., Qualitative theory of differential equations, Courier Dover Publications, 1989, 523 pp.

[6] Agrachev A. A., Sachkov Yu. L., Geometric control theory, Fizmatlit, M., 2005, 391 pp.

[7] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry — methods and applications, v. I, The geometry of surfaces, transformation groups, and fields, Springer, 1992, 470 pp. | MR | Zbl

[8] Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 35, VINITI, M., 1989, 240 pp. | MR

[9] Arnol'd V. I., Ordinary differential equations, Nauka, M., 1971, 239 pp. | MR

[10] Arnol'd V. I., Additional chapters of the theory of ordinary differential equations, Nauka, M., 1978, 304 pp. | MR

[11] Krein S. G., Yatskin N. I., Linear differential equations on manifolds, Voronezh State University, Voronezh, 1980, 131 pp. | MR

[12] Pontryagin L. S., Ordinary Differential Equations, Nauka, M., 1965, 331 pp. | MR | Zbl

[13] Myshkis A. D., Linear differential equations with the retarded argument, Nauka, M., 1972, 361 pp. | MR | Zbl

[14] Hale J., Theory of functional differential equations, Springer-Verlang, Berlin, 1977, 231 pp. | MR | MR | Zbl

[15] Krasovskii N. N., Some problems in the theory of stability of motion, Fizmatgiz, M., 1959, 211 pp. | MR

[16] Demidovich B. P., Lectures on the mathematical stability theory, Nauka, M., 1967, 472 pp. | MR

[17] Levitan B. M., Almost periodic functions, Gostekhizdat, M., 1953, 396 pp. | Zbl

[18] Levitan B. M., Zhikov V. V., Almost periodic functions and differential equations, CUP Archive, 1982, 211 pp. | MR | MR

[19] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., Mathematical theory of optimal processes, Nauka, M., 1969, 384 pp.

[20] Engel'king R., General Topology, Mir, M., 1986, 751 pp. | MR

[21] Skvortsov V. A., “Borel set”, Mathematical encyclopedia, v. 1, Soviet Encyclopedia, M., 1977, 535

[22] Hausdorff F., Set theory, American Mathematical Soc., 1957, 352 pp. | MR

[23] Milich N. V., Structure of the set of control and position control of a linear nonstationary system, Cand. Sci. (Phys.-Math.) Dissertation, Izhevsk, 2000, 117 pp. (in Russian) http://minimax.school.udsu.ru/files/1275393018.pdf

[24] Nikolaev S. F., Properties of the speed function and position control of a linear nonstationary system, Cand. Sci. (Phys.-Math.) Dissertation, Izhevsk, 1998, 117 pp. (in Russian) http://minimax.school.udsu.ru/files/1275393020.pdf