Evasion from a group of inertial objects in fourth order game
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 42 (2013) no. 2, pp. 58-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of conflict interaction of one evader with a group of pursuers with equal dynamic capabilities of all players. The motion of each player is defined by fourth order differential equation. The initial conditions are given at the initial time. We prove that if zero does not belong to convex hull spanned by the vectors of the initial conditions, then evasion from capture is possible.
Keywords: differential games, group pursuit, state constraints, evasion from capture.
@article{IIMI_2013_42_2_a1,
     author = {L. S. Chirkova},
     title = {Evasion from a group of inertial objects in fourth order game},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {58--101},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a1/}
}
TY  - JOUR
AU  - L. S. Chirkova
TI  - Evasion from a group of inertial objects in fourth order game
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2013
SP  - 58
EP  - 101
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a1/
LA  - ru
ID  - IIMI_2013_42_2_a1
ER  - 
%0 Journal Article
%A L. S. Chirkova
%T Evasion from a group of inertial objects in fourth order game
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2013
%P 58-101
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a1/
%G ru
%F IIMI_2013_42_2_a1
L. S. Chirkova. Evasion from a group of inertial objects in fourth order game. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 42 (2013) no. 2, pp. 58-101. http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a1/

[1] Pshenichnyi B. N., “Simple pursuit by several objects”, Kibernetika, 1976, no. 3, 145–146

[2] Chernous'ko F. L., “One problem of evasion from many pursuers”, Prikl. Mat. Mekh., 40:1 (1976), 14–24

[3] Petrov N. N., Shchelchkov K. A., “To the problem of Chernous'ko”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 4, 62–67

[4] Zak V. L., “Problem of evasion from many pursuers controlled by acceleration”, Izvestiya Akademii Nauk SSSR. Tekhnicheskaya Kibernetika, 1981, no. 2, 51–71 | MR

[5] Prokopovich P. V., Chikrii A. A., “An evasion differential game”, Dokl. Akad. Nauk Ukr. SSR. Ser. A, 1989, no. 1, 71–74 | MR | Zbl

[6] Chikrii A. A., Prokopovich P. V., “The problem of evasion from a group for inertial objects of the same type”, Differ. Uravn., 30:6 (1994), 998–1004 | MR

[7] Petrov N. N., “On the nonstationary problem of group pursuit with phase constraints”, Mat. Teor. Igr Prilozh., 2:4 (2010), 74–83 | Zbl

[8] Chirkova L. S., “Evasion from a group of inertial objects”, Journal of Computer and Systems Sciences International, 46:3 (2007), 377–385 | DOI | MR

[9] Sakharov D. V., “On two differential games of simple group pursuit”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 1, 50–59

[10] Bannikov A. S., “Evasion from group of non-stationary inertial objects”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 1, 3–10

[11] Bannikov A. S., “Some non-stationary problems of group pursuit”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2013, no. 1 (41), 3–46

[12] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp. | MR | Zbl